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Abstract—Parser generators show great promise in producing
more secure input validation and processing routines. Operating
system Kernels are a particularly appealing place to deploy
generated parsers due to their position at the periphery of
a machine’s attack surface, the power they wield, and their
complexity. At the same time, kernels can also be byzantine
and idiosyncratic. Before we attempt to create generated parsers
for wide deployment into kernels, therefore, it is important to
understand how much of the existing codebase those parsers will
replace, what (if any) functionality beyond parsing the generated
code will need to implement, and what kernel facilities the code
must integrate with. To answer these questions, we analyzed three
protocol implementations in each of three open-source kernels
to understand their behavior and organization. We identified
commonalities and differences, measured the quantity of code
used for different purposes, identified when and how multiplexing
decisions were made, and analyzed the order in which operations
were performed. We intend this analysis to inform the creation of
generated parsers, for a variety of protocols, that can be smoothly
integrated into modern kernels.

Index Terms—protocol stacks, generated parsers

I. INTRODUCTION

Parser bugs are a common source of software vulnerabili-
ties [2]. One approach to reduce the likelihood of such bugs
is to generate parsers using programs instead of writing them
by hand: such a parser generator takes as input a description
of valid inputs and produces as output code that recognizes
those inputs. If the generator is written to produce a parser
that implements secure programming practices, all parsers it
outputs will have the benefit of those practices. Additionally, if
a new method or practice is developed, one need only update
the generator and re-generate all the parsers to deploy a new
layer of defense. Furthermore, it is often easier to verify (by
hand) the correctness of the description of valid inputs than it
is to confirm that a hand-written parser correctly implements
a given protocol specification.

Many approaches to the task of parser generation have been
developed over the years, resulting in tools that streamline
the process of integrating the generated code into a software
project [14, 22]. Such integration is much easier when a piece
of software is designed with the intention of using a generated
parser and, while there is much opportunity for improving
security by encouraging authors of new software to use parser
generators, there is also a great deal of existing software that
would benefit from those generated parsers as well.
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Operating systems, in particular, are an especially appealing
target for generated parsers. By their very nature, this class of
software implements parsers for a huge number of protocols
and bugs in any of them can potentially compromise the
entire system due to operating-system code running at a
higher privilege level. While the idea of re-engineering kernels
wholesale is appealing and has seen spectacular progress [13],
these more-secure kernels have not yet made their way to the
servers, desktops, laptops, phones, watches, cars, and other
devices that people use on a daily basis. Therefore, to broaden
the benefit of generated parsers, it behooves us to deploy them
in the operating systems that do run on those devices.

It has previously been shown that generated parsers can be
cleanly integrated into modern operating systems [12]; in that
case, a parser for the USB protocol on FreeBSD. While this
was a necessary stepping-stone on the path to wide adoption,
it only solved the problem for a single protocol on a single
operating system. We hypothesize that both other protocols
and other operating systems will pose different problems.
For example, different operating systems might have different
mechanisms or patterns for managing memory or performing
synchronization; some might have single-threaded protocol
stacks and some might be multi-threaded; some protocols
might induce significantly different software architectures; and
SO on.

At the same time, it is unclear how much code within kernel
protocol stacks is devoted exclusively to parsing (as opposed
to tasks such as memory management, logging, interfacing
with hardware, etc.) and therefore what quantity of code could
be replaced by generated parsers. Relatedly, to integrate with
existing kernels, generated parsers will need to conform to
their data structures and APIs, the extent of which is also
unknown.

In this paper, we present the results of our survey of three
protocol implementations (IP, USB, and SCSI) in each of three
open-source kernels (FreeBSD, Illumos, and Linux), which
we performed to gain preliminary insight into all of these
questions. While this is not an exhaustive survey of all kernel
protocol stack patterns, given the wide deployment of those
protocols and operating systems, we believe it gives a repre-
sentative view that can inform the design, implementation, and
deployment of generated parsers.

We traced the code path traversed by a transmission unit



(e.g., a packet in the IP module) from its ingress point to its
egress point of the protocol implementation and we annotated
each line of code along that critical path according to its
purpose (e.g., parsing, memory management, logging). Using
this data, we present answers to the following questions:

o What classes of tasks are performed within a protocol
implementation?

o Are there similarities in the order in which these tasks
are performed between protocols or operating systems?

o How much code is devoted to each category of task in
each implementation within each operating system?

« What aspects of incoming data are validated by each
implementation and at what point during the processing
of the transmission unit are they validated?

o What kind of multiplexing or routing is performed as the
transmission unit traverses the code path?

o What general kernel facilities are used (e.g., for memory
management or synchronization) and are the same inter-
faces used across all protocols within a single operating
system?

We hope that our results can be used to inform the design
and implementation of parser generators that target deployed
operating systems. That said, we fully appreciate that hard-
ware is very messy, often requiring a great deal of special-
case handling [4], and so it would be unrealistic to assume
that humanity is on the verge of replacing huge swaths of
operating-system internals with generated code. At the same
time, however, it is not clear how extensive those replacements
could be. It is the potential that this paper also seeks to help
quantify.

We proceed by describing our process (Section II), present-
ing and analyzing the results we produced (Section III), before
concluding (Section IV).

II. PROCESS

To answer the questions enumerated in Section I, we per-
formed a manual analysis of the source code of three protocol
implementations in each of three operating system kernels. We
identified where a unit of data entered the code and where
it exited; we then categorized each line of code traversed
according to its purpose. Below, we describe the reasoning
behind our choices of operating systems and protocols, along
with further detail on the analysis we performed, including
descriptions of the categories we identified. In Section III, we
present our results.

A. Choice of operating systems

In an effort to analyze a representative set of operating
systems, we chose FreeBSD, Illumos, and Linux. Specifically,
the following versions:

o FreeBSD 13.0-RELEASE, with no errata patches applied;

o Illumos revision from 04 Jun 2021 (37fc8al)';
¢ Linux version 5.12.9.

llumos does not use formal version numbers.

Our intention behind these choices was to balance popu-
larity with variety of implementation approaches. Linux is
the most widely-deployed open-source operating system in
the world, and thus deserves our attention. FreeBSD is the
most widely-deployed open-source descendant of the BSD
family of UNIX. While it does not have the usage numbers
of either Linux or even FreeBSD, Illumos (the successor of
OpenSolaris) is nonetheless the most accessible open-source
descendant of the System V release of UNIX. Since all three
come from different software geneologies (BSD and System V
deviated in the late 1970s/early 1980s and Linux has always
been developed outside the original, core UNIX community),
we believe these three present a reasonable cross-section of
modern operating system kernels.

We considered others such as Plan 9 and microkernels,
but felt that their lack of widespread modern deployment
made them less representative, despite potentially presenting
significantly different software architectures.

B. Choice of protocols

As with our choice of operating system kernels, we wanted
to analyze protocol implementations that were both widely
used and varied in their details. To that end, we chose to
examine implementations of version 4 of the Internet Protocol
(IP), version 3.0 of the Universal Serial Bus (USB) protocol,
and the Small Computer Systems Interface (SCSI) protocol.
We believe these fulfill our needs for several reasons.

o All three of these protocols are extremely widely de-
ployed: billions of devices implement them and all rele-
vant operating systems support them. We are not aware
of research that shows it, but we would not be surprised
if these were the three most prevalent protocols, in terms
of data transferred, in the world.

o The three protocols are used in different domains: IP
for interprocess communication, USB (usually) for com-
munication with peripheral devices, and SCSI for com-
munication with storage devices. As a result, the code
that implements each protocol would embody different
goals and tradeoffs, live in different areas of each kernel
source tree, and quite likely be developed and maintained
by different groups of people, all potentially resulting in
varied implementation approaches.

e Because of their various histories, the hardware involved
to support each, and the other kernel subsystems they
interact with, we expected that IP, USB, and SCSI would
naturally induce a variety of software architectures inside
the operating system.

Despite the expected variations hinted at above, we knew
we would find some similarities. Because all of these proto-
cols must receive data from somewhere, we knew that each
protocol implementation would have an ingress point, where
a unit of communication entered the code module in question.
Likewise, because all of these protocols act on behalf of other
processes, each implementation would have an egress point,
where the unit of communication was passed on to the “higher
layer” for further processing. We considered these two points



Protocol | Ingress Point | Egress Point

1P hand-off from link layer | hand-off to transport layer
(e.g., Ethernet) (e.g., TCP, UDP)

USB bus controller interrupt | hand-off to device-specific
handler driver

SCSI HBA controller interrupt | hand-off to filesystem or
handler block 1/0O layer

TABLE I
INGRESS AND EGRESS POINTS IDENTIFIED FOR EACH PROTOCOL
ANALYZED.

the bounds of our investigation; the ingress and egress points
we used for each protocol are enumerated in Table I, and are
elaborated on below.

1) Internet Protocol, Version 4 (IP): The Internet Protocol
(IP) is responsible for routing data packets between intercon-
nected networks and is thus endemic to modern life; version
4 [17] is the dominant variant. IP comprises one layer of
the Internet protocol suite; it is bordered below by link layer
protocols such as Ethernet and above by transport protocols
such as UDP and TCP. This protocol arrangement means
that transmission units arriving at a kernel will usually be
processed by a link-layer component (often some combination
of hardware and software) before being delivered to the IP
component; and that, when it has completed its own work, the
IP component will deliver the packet on to another component
such as TCP. Therefore, we considered the ingress point for
IP to be where it receives a packet from the underlying link
layer, and the egress point to be where it delivers the packet
to the upper, transport layer.

Two of the operating systems we examined, FreeBSD and
Linux, implement their IP stacks according to specific design
criteria that promote flexibility, composability, and security.
In the case of FreeBSD, its NetGraph system [19] defines
a notion of processing nodes, interfaces between them, and
a mechanism to connect them. The idea is that each node
implements self-contained functionality that is applied to a
single packet (e.g., handling IP, handling ICMP, handling
TCP) and these nodes can be connected together to create a
processing graph. (In this context, a graph is more suitable than
a linear chain due in large part to the multiplexing features of
protocols such as IP.) Somewhat similarly, Linux’s networking
stack is tightly coupled with NetFilter [1], a collection of
hooks that allow packets to be verified, manipulated, logged,
queued, and so on, as they traverse the system.

We considered including TCP in our analysis, but we con-
cluded that the similarity in structure between IP headers and
TCP headers, as well as the fact that the code to handle both
are likely developed together, meant that significant variations
(for our purposes) were unlikely. Additionally, we expected
that much of the processing at the TCP layer was likely to be
related to the TCP state machine, and thus more in the realm
of session generation [21, 16] than parser generation.

2) Universal Serial Bus (USB): The Universal Serial Bus
protocol is, as its name applies, a protocol to support many dif-
ferent devices types sharing a single, high-speed serial bus [9].
Similar to IP, it is a packet-based protocol that encapsulates

Operating System | Driver | HBA Manufacturer
FreeBSD siis SiliconImage
Tllumos pmcs PMC-Sierra
Linux aic79xx | Adaptec

TABLE II

SCSI HBA DRIVER EXAMINED IN EACH OPERATING SYSTEM.

and transports device-specific data. Unlike IP, however, the
USB specifications dictate functionality all the way down to
electrical signals on the wire. Therefore, for our analysis to be
thorough, we treated the bus-controller’s interrupt handler as
our ingress point. Likewise, since USB multiplexes the single
transport stream between multiple devices and processes, we
treated the point at which data is handed to a device-specific
driver as our egress point.

Several versions of USB currently exist, many of which
are still in active use; we examined the implementation of
version 3.0—often referred to as XHCI: the eXtensible Host
Controller Interface [6]—because it is the most modern. All
versions of USB support different types of data transfers:
control messages, isochronous transfers, and so on. For our
analysis, we looked at the “bulk” data transfer code path
because it is the most general-purpose. Where IP must handle
unsolicited and/or unexpected packets that arrive, USB is a
request/response protocol: the host sends a request and the de-
vice responds to it. As a result, we expect to find more stateful
computation in this component than in IP implementations.

We treated the XHCI interrupt handler as our ingress point
and the hand-off to the specific device driver as our egress
point.

3) Small Computer Systems Interface (SCSI): Much like
the Internet Protocol became the de-facto standard for allowing
packets to traverse interconnected networks, the SCSI protocol
has become the de-facto standard for sending commands
to and receiving results from storage devices. Disk drives
attached via USB and Serial ATA use the SCSI command
set, as do more exotic interconnects like Fibre Channel, and
access to remote storage devices can be implemented across
networks using iSCSI.

Like USB, the SCSI standards dictate the behavior of the
system at the wire-level; but unlike USB, these standards do
not extend to the interface between the host computer and the
bus controller, known as the “host bus adapter” (HBA). As a
result, HBA manufacturers have defined their own interfaces
which necessitate their own drivers. This is demonstrated
by a cursory examination of any of the kernels we looked
at, which contain a single implementation of, e.g., XHCI,
which is manufacturer agnostic; whereas they all contain
several different HBA driver implementations from different
manufacturers. Given that even open-source driver code is
often written and provided by the HBA manufacturer, and we
wanted a variety, we chose the following HBA drivers, which
are listed in Table II.

Somewhat like USB, the SCSI architecture separates the
notion of devices from that of a bus. And while USB allows
vendors to define their own device-level protocols, the SCSI



standards define the protocol used by individual devices such
as rotational disks, tape drives, and optical disks2. Thus, there
exist many fewer device-level drivers in the SCSI world than
in the USB world.

Also like USB, SCSI is a request/response protocol; there-
fore, also like USB, we expect to see more stateful computa-
tion here than in IP.

In contrast to the variety of HBA drivers we chose, we
decided to examine only one device-level SCSI driver in each
of the three operating systems; specifically, we chose the driver
that works with SCSI disks (as opposed to tape drives or
optical drives). This is because we believe it to be by far the
most frequently used. In FreeBSD, this is the da driver; in
Illumos and Linux, the drivers are both called sd.

The device and driver model just described, which is in-
duced by the SCSI architecture itself, leads to a corresponding
software architecture in which a transmission unit is read off
the HBA (usually using DMA) by the HBA driver and then
handed to the device driver for further processing. All three
operating systems we examined defined a layering, with the
HBA driver at the bottom and the device driver at the top, as
well as an interface for the two layers to interact. FreeBSD’s
interface is the Common Access Method (CAM) [18, Chap-
ter 12]; Mlumos’ is the Sun Common Systems Architecture
(SCSA) [20, Chapters 17 & 18]; Linux uses an unnamed three-
layer approach [5] though, upon inspection, the middle layer
is just glue and does not seem to comprise a distinct software
component with a well-defined boundary.

For our analysis, we treated the ingress point to be the HBA
driver’s interrupt handler and the egress point to be the call to
the upper-level I/O module (e.g., filesystem, block I/O).

C. Execution Traces

Once we identified the ingress point in each component,
we traced execution to the corresponding egress point. If a
function was called, we analyzed its body if the function either
lay along the main path to the egress point or if the function
operated on the contents of the transmitted data in any way. If
neither of these conditions were true, we treated the function
call as a single line of code. (For example, we felt that diving
into the details of logging or synchronization functions didn’t
provide much insight to our questions.)

When execution encountered control flow structures (e.g.,
if/else, switch/case), we followed the common case.
Our reasoning was that, because this is the most well-traveled
path, it would be the most representative. As specific exam-
ples: in XHCI and SCSI, we followed the code path that dealt
with successful command completions; in IP, we followed the
code path that did not involve IPSec. Likewise, we included
checks for data malformation, but did not trace into the
code that runs in the case of malformation being found. We
encountered very few loops; those we did find fell into two
categories: looping through enqueued transmission units to call

2It is worth noting that USB also defines the “USB mass storage” device
class [8], which is a standard for interacting with any storage device that
follows those rules. It is essentially SCSI wrapped within USB.

Category Description

parsing turning raw bits into named and typed val-
ues

multiplexing control-flow decision based on contents of

transmitted data

getting/setting values external to packet
allocating and deallocating memory, DMA
operations

reading and writing registers, checking bus
state

state management
memory management

hardware manipulation

synchronization mutex locking and unlocking, condition
variable waiting and signalling

queueing enqueueing and dequeueing

diagnostic logging, tracing, and statistics

assertion

sanity checking

TABLE III
CATEGORIES USED TO CLASSIFY LINES OF CODE IN THE PROTOCOL
STACKS EXAMINED.

a handler function on each (in which case we treated the loop
as a single line of code that transitions to another function);
and looping through fields within a transmission unit (e.g., IP
options), in which case we treated the entire loop as parsing.

Next, we took these execution traces and categorized every
line of code within according to its purpose. Single statements
that spanned multiple lines received multiple annotations (our
reasoning being that these are likely more complex operations
and therefore worthy of more weight). We had an idea of what
categories to expect before we began, but we kept open the
possibility that we would find something unexpected. (We did
not expect to find assertions as prevalent as they were, at least
in Illumos.) The final set of categories we applied is shown in
Table III.

If a single line of code seemed to fall under multiple
categories, we labeled it with the topmost category in that
table (that is, the higher the category in the table, the “more
important” we considered it). In a few very rare cases, par-
ticularly relevant operations such as parsing and multiplexing
were performed on the same line, in which case we added an
empty line annotated with the second purpose.

Here we provide more detail of what operations comprise
each category we identified.

a) Parsing: The task of applying meaning to meaningless
data takes several forms; in the code we examined, it was
usually assigning a typed pointer to untyped memory or
extracting sequences of bits from larger values and saving the
results in typed variables (note that this includes endianness
manipulations). This category also includes validation of the
transmitted data. For implementations that contained support
for user-defined filtering and validation rules (e.g., NetFilter
on Linux, pf [11] on FreeBSD), we marked the invocation of
those mechanisms as “parsing” but did not descend into their
internals.

b) Multiplexing: Since all the code we examined was
written in the C programming language, multiplexing was
accomplished using the switch/case construct, jump tables,
and function pointers. Jump tables were usually hard-coded
(e.g., in IP implementations, indexed by protocol number to
identify the handler function for the payload). Function point-



ers were usually used to process a response to a previously-
sent request, and the target of the function pointer was set
when the request was originally issued.

c) State management: Computation based on data sep-
arate from the transmission unit traversing the protocol. This
includes decisions such as “does the destination address in
this IP packet match the address of a local interface?”, which
uses a value from the IP packet but the “correctness” of the
value depends on the state of the particular system and not
the definition of the protocol (which is what distinguishes
this example from parsing or validation—more on this in
Section IV).

d) Memory management: Operations that request or re-
lease memory buffers from the kernel; syncing DMA memory;
memory fences; flushing page caches.

e) Hardware manipulation: Reading and writing of reg-
isters; checking the state of the controller or bus. Due to the
nature of the protocols in question, the IP implementations
did not contain any hardware manipulation, USB implemen-
tations contained minimal, and the HBA layer of the SCSI
implementations contained a fair amount (we quantify this in
Section III).

f) Synchronization: Some stacks are multithreaded and
therefore use mutexes (locking and unlocking) and condi-
tion variables (waiting and signalling) to coordinate between
threads. We did not observe any semaphores or other synchro-
nization structures.

g) Queueing: The multithreaded stacks use queues to
delegate processing of tasks, usually handlers for various
stages of processing, in the form of callback functions. Addi-
tionally, XHCI uses a ring-buffer to manage outgoing requests
and incoming responses; interaction with those structures fall
into this category as well.

h) Diagnostic: This category includes logging messages
(such as for syslog), execution-tracing machanisms (e.g.,
DTrace [3] and SystemTap [7] probe points), and maintaining
statistics (e.g., number of dropped IP packets for netstat,
number of I/O errors for iostat).

i) Assertion: Verifying that hardware is sane or consis-
tent; verifying that input pointers are non-NULL; etc. Any
assertions dealing with the content of transmitted data were
marked as parsing.

To sum up, we identified three protocols and three operating
systems (and thus a total of 9 code modules), we identified the
ingress and egress points in each, we traced execution between
them, and we categorized each line of code along that path.
The next section presents the results of this effort.

III. RESULTS

Having performed the categorization described in Section II,
we processed the results in several ways. We counted the
number of lines of code that we identified in each category;
we identified where multiplexing was being performed and
what data determined the decision made in each case; we
produced colorized code diagrams to get a sense of the general
organization of each implementation; and we identified the

general facilities used by each. All of these points of analysis
are relevant to the effort of producing a mechanism to generate
code for a variety of protocols and that can be integrated with
a variety of operating systems. We present and discuss each
of those efforts below.

A. High-level categorization

Tables IV and V show the amount of code—number of
lines and percentage of total lines, respectively—dedicated
to each categorized purpose with each stack. Note that the
rows are ordered the same as in Table III: “more important”
categories are nearer the top. Recall also that this is not the
total number of lines of code in these modules: it is the
lines of code along the critical path that interact with the
content of the protocol transmission unit. These tables are not
intended to convey a deep understanding, but several points
are immediately apparent.

First and foremost, in all three IP implementations, a huge
portion of the code is performing parsing (which includes input
validation). Had we further subdivided the code modules, we
would see that the majority of the parsing is dealing with IP
options. This makes sense given their complexity (and, not
at all coincidentally, their reputation as a breeding ground
for vulnerabilities—there is even an RFC wholly dedicated to
filtering IP options because of how fragile they can be [10]).
As skewed as the numbers are towards parsing in the IP
implementations, both USB and SCSI require a non-trivial
amount as well.

This leads us to conclude that the amount of code that
could be replaced with generated parsers depends upon the
particular protocol in question. In IP, with its complex structure
of options and commensurately complex code to parse them,
upwards of 85% of the code has the potential to be replaced.
In contrast, both USB and SCSI are potentially less lucrative
opportunities for replacement or retrofitting. (These conclu-
sions are fairly consistent across operating systems, which
corroborates the intuition that driver code complexity is more
due to the complexity of the underlying protocol rather than
the kernel enclosing it.)

Secondly, all three kernels perform a similar amount of mul-
tiplexing in each protocol implementation. This is reassuring:
as a spot-check on our analysis and as a predictor of the kind of
processing a generated protocol stack would need to perform.
That said, it would be informative to understand the meaning
of the discrepancies; we analyze that in Section III-B below.

Each protocol shows different discrepancies in terms of state
management. Linux seems to perform relatively little in IP;
[lumos seems to perform relatively little in USB; and Linux
seems to perform quite a lot in SCSI. Here is where our
analysis is a bit deceiving: the state management can happen
within functions into which our analysis did not descend.
Alternatively, if state management happens inline, such that
our analysis catches it, we mark it as such even if it doesn’t
depend on or manipulate the contents of the data transmission.
An enhancement to our work would be to develop a more fine-



grained understanding of what state is being modified and at
what level of abstraction.

In terms of memory management, FreeBSD is particularly
parsimonious: almost certainly as an optimization measure,
it minimizes allocating and deallocating memory in all three
protocol implementations.

It is unsurprising that all three SCSI implementations inter-
act with the hardware because all three include an HBA driver.
What is perhaps surprising is that all three USB implementa-
tions interact with the hardware so much. We believe this is
a consequence of the XHCI specification, which requires that
state be synchronized between OS and controller.

None of the IP implementations do much synchro-
nization: packets are handled in a single-threaded execu-
tion environment. By contrast, all three operating systems
use multithreading—with queues, mutexes, and condition
variables—to handle both USB and SCSI. In part, this is
certainly due to the asynchronous, request/response nature of
those protocols.

The queueing row corroborates this, with one caveat per-
taining to USB. To achieve its high speeds, USB 3.0 (XHCI)
uses a ring buffer in DMA memory shared between the
operating system and the bus controller, to which requests are
queued and from which responses are dequeued. We marked
operations interacting with this ring buffer as “queueing”, but
they do not fall under the banner of multithreading. (On the
other hand, one could make the argument that they fall under
the banner of multiprocessing, as they are used by the CPU
to delegate a task to the XHCI controller.)

Illumos in particular really likes its assertions, whereas they
are effectively absent in both FreeBSD and Linux. It would
be interesting to know the underlying design philosophies and
histories that led to this situtation.

Finally, it seems as if FreeBSD just uses a lot more code:
for both IP and USB, the FreeBSD implementations are
significantly larger. On the other hand, consider Table VI,
which shows the number of functions touched in each im-
plementation. (By “touched”, we mean that we descended
into them for our analysis: they either lay on the critical
path between ingress and egress points or they manipulated
the transmitted data.) It could be that the FreeBSD design
philosophy encourages less abstraction in these components
(and it could also be that their USB developers didn’t get the
memo).

All of these points work to inform decisions that must be
made when designing generated protocol stacks: IP options
are not to be underestimated; different kernels use different
levels of abstraction; some protocols favor asynchronous,
multithreaded, queueing environments and some do not; some
protocols require significant interaction with the underlying
controller hardware, some do not.

B. Multiplexing

All protocols we examined support multiplexing different
communication streams over the same transport layer and

underlying communication medium. As a result, each imple-
mentation performs some kind of multiplexing on the software
side based on internal state and data within a transmission unit.
We identified every point where such multiplexing occurs,
recorded the determining factor in the branching decision, and
the language construct used to implement each. Tables VII,
VIII, and IX show the results for IP, USB, and SCSI, re-
spectively. Rows are ordered according to the sequence in
which the multiplexing decisions are made: earlier decisions
are listed above later decisions. Empty cells indicate that the
operating system in question did not perform multiplexing
based on that row’s criteria.

The information in these tables is valuable to our long-term
goal of generating parsers that can be inserted into a variety of
operating system protocol implementations. The data provides
guidance for what kinds of decisions the generated code
should probably make, the data it needs to make them, and
mechanisms it might use to implement them.

We next elaborate on each domain.

1) IP: Unsurprisingly, all implementations perform mul-
tiplexing based on the protocol field of the IP header: this
is what determines whether the IP packet contains an ICMP
datagram, a UDP datagram, a TCP fragment, and so on—
it is fundamental to the concept and functioning of the
Internet Protocol. What is interesting is that both Linux and
FreeBSD define jump tables enumerating all protocols that can
be encapsulated within IP, whereas Illumos uses a switch
statement. Further differentiating Illumos is that, near the
beginning of its processing of a packet, it multiplexes based on
the (type of) destination: local, loopback, multicast, broadcast,
forwarding, etc. Linux and FreeBSD do not appear to have a
similar decision point within the IP-handling code proper; we
hypothesize that is it handled at the Netgraph (FreeBSD) and
NetFilter (Linux) layers.

2) USB: In the USB realm, the methods used by Linux and
Illumos were most similar and FreeBSD was the outlier (this
discrepancy is corroborated by the graphical representations
of the code presented in Section III-C). At the beginning of
handling an XHCI interrupt, all three operating systems use
a switch statement to route computation based on the type
of the XHCI event being processed; and at the end, all three
use a callback to pass the data to the device-specific driver
that initiated the original request. In the middle, both Linux
and Illumos multiplex based on the endpoint type (control,
isochronous, and bulk); interestingly, Illumos uses a switch
whereas Linux uses an if/else. This is likely because there
are only three options to choose from.

As seen in Table VIII, FreeBSD is a bit strange: it uses two
different callbacks, both set when the transfer is initialized,
but invoked at different points in the processing sequence.
One is called when the response is removed from the bus-
specific queue of tasks to be processed; the other is called
when processing the result of a single transfer. We believe
this is the result of the multithreading model that FreeBSD
chose to implement, and thus should be kept in mind when
considering how to integrate with that operating system.
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FreeBSD Linux

multiplexing
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hardware manipulation

queueing

total

FreeBSD

SCSI
Tllumos

USB
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TABLE IV
NUMBER OF LINES OF CODE DEDICATED TO IDENTIFIED PURPOSES WITHIN EACH PROTOCOL STACK.

1P

FreeBSD  Illumos Linux
0.3%

10.4%

multiplexing
state

hardware manipulation

queueing

100.0%  100.0%  100.0%

FreeBSD

SCSI
Illumos

USB

Tllumos Linux FreeBSD Linux

1.4%
30.6%

1.9%
19.8%

1.8%
19.9%

100.0%  100.0%  100.0% 100.0%  100.0%  100.0%

TABLE V
PERCENTAGE OF LINES OF CODE DEDICATED TO IDENTIFIED PURPOSES WITHIN EACH PROTOCOL STACK.

| FreeBSD | Mlumos | Linux

1P 2 9 11

USB 13 9 9

SCSI 6 9 14
TABLE VI

NUMBER OF FUNCTIONS TOUCHED ALONG CRITICAL PATH IN EACH
PROTOCOL IMPLEMENTATION.

| FreeBSD | Tllumos | Linux
destination class callback
ip.protocol jump table | switch | jump table
TABLE VII

IN EACH IP STACK, FIELDS UPON WHICH MULTIPLEXING IS PERFORMED
AND THE METHOD USED.

3) SCSI: All three operating systems use a callback to
invoke the device-specific driver (we traced the execution of
the disk driver, as discussed in Section II-B3). The HBA
drivers we examined in Linux and Illumos both use a callback
function to pass a command completion structure to the higher
layer; FreeBSD does not. We believe this is because the drivers

| FreeBSD | Tllumos | Linux
XHCI event type | switch switch switch
transfer callback
endpoint type switch if/lelse
endpoint callback
transfer callback switch, callback callback
TABLE VIII

IN EACH USB STACK, FIELDS UPON WHICH MULTIPLEXING IS PERFORMED
AND THE METHOD USED.

| FreeBSD | Mllumos | Linux
OS request handler callback | callback
device driver callback callback | callback
storage layer callback
TABLE IX

IN EACH SCSI STACK, FIELDS UPON WHICH MULTIPLEXING IS
PERFORMED AND THE METHOD USED.

we examined in Illumos (pmcs) and Linux (aic79xx) were
written to be as OS-agnostic as possible: the callbacks in
question allow the operating system to supply a function
by which the completed command exits the HBA-specific
code and enters the general SCSI code. This suggests that
FreeBSD’s siis driver may have been written specifically
for FreeBSD.

Linux’s request structure, which is passed into the SCSI
layer to issue a request, contains a function pointer that is
called by the SCSI layer to deliver the result. FreeBSD and
Illumos instead call a function in the storage layer (in both
cases called biodone), whose single parameter is the request,
and which presumably performs the demultiplexing outside the
SCSI layer.

C. Sequence of operations

In addition to the operations performed by each stack, as
discussed previously in this section, we were interested in their
order and shape. Did the implementations follow a similar
sequence of operations, a similar pattern? Did the raw number
of lines of code belie significant differences in the length of
those lines (lots of shorter lines might suggest comparable



complexity to fewer, longer lines)? To study this, we produced
the diagrams shown in Figures 1, 2, and 3. Each line in the
figures represents a single line of code; the color matches the
colors in Tables IV and V; the length of each line matches the
(relative) length of the corresponding line of code.

As with the counts, the first thing that jumps out about the
IP diagrams is the preponderance of parsing: the largest chunk
of blue in each represents handling of the IP options. All three
IP implementations do most of their state management at the
beginning. FreeBSD performs more parsing at the beginning
of the IP processing sequence than either of the others.

In the USB diagrams, we see that FreeBSD and Linux both
put more hardware interaction directly in the critical path,
whereas [llumos seems to have abstracted away those details.
All three implementations seem to sprinkle parsing operations
throughout; this could be evidence of shotgun parsers [15].
Again FreeBSD has the most lines of code, but here we see
that many of those lines are very short: this supports the
hypothesis that the code is not actually more complex; it may
just follow different formatting guidelines. We see that the
multiplexing points fall at roughly the same intervals in each,
which suggests a similar pattern—this is encouraging evidence
towards the practicality of a generated implementation.

Finally, the SCSI diagrams show the most variation between
the three implementations. This could be due to the age
of implementations (the SCSI standard has been around for
decades and driver implementations perhaps have not received
as much attention as, e.g., IP stacks due to the security and
performance sensitivity of the latter).

IV. CONCLUSION

In the preceding pages, we described our work in tracing
execution through the critical path of three protocol implemen-
tations in each of three open-source operating system kernels.
We categorized each line of code along these critical paths,
identified the purpose of each, and analyzed the results. We
believe the resulting understanding of common patterns, con-
structs, and operating system facilities used will be beneficial
in efforts to create frameworks that can generate parsers for
varied protocols that can be embedded in kernels. Based on
our categorizations, we conclude that generated parsers could
replace large amounts of hand-written code—upwards of 90%
by line count in IP, 30% in USB, and 24% in SCSI—made all
the more robust if the correctness of these parsers is proven.

Therefore, we conclude that the feasibility of replacing ker-
nel protocol implementations with generated parsers depends
greatly upon the protocol in question. The complexity of IP
(specifically due to its support for options) makes it a partic-
ularly compelling target. Furthermore, referring to Figure 1,
we see that the parsing portions of the IP stack are generally
fairly self-contained, which indicates that it should be possible
to just drop in a generated parser. USB and SCSI do not,
unfortunately, feature as much self-contained code, which
means that automatically generating a significant portion of
those implementations will require that the generated code be
responsible for more than just parsing. While intuition may

have pointed to the same conclusion, it is still beneficial (and,
indeed, necessary to produce a generated parser) to quantify
the bounds of the parser’s responsibilities.

Additionally, the data presented in Tables VII, VIII, and IX,
which summarize the multiplexing performed in each of the
three protocol stacks, inform the design of generated parsers.
As they enumerate both the fields upon which multiplexing
is performed and the programmatic construct used to perform
each multiplexing operation, they serve as checklists to ensure
generated parsers are mindful of the relevant protocol fields
and to provide suggestions for implementation patterns.

Because the topic of generating parsers for these envi-
ronments was on our mind throughout the exploration and
analysis documented in this paper, several questions occurred
to us that we feel need to be addressed before going too far
down the path of parser generation for operating systems. The
two most significant are these:

First, what portion of relevant protocols are ripe for gen-
eration? Are there important protocols that require some
hand-written components (likely due to undecidability of the
underlying input language)?

Second, what is the extent of the task of parsing? Certainly
it should encompass validation that can be performed just by
examining the unit in question (e.g., “is the checksum valid?”,
“does the value of the length field match the length of the
datagram?”); but does it extend to questions that depend on
other state (e.g., “does the destination address of this packet
match the address of a local interface?”’). The answer to
this question will greatly affect the ambition level of parser-
generation efforts.

Future work entails taking the results produced in this paper
(the patterns, interfaces, and so on that we documented and
analyzed) and applying it to the task of parser generation:
defining the bounds of the generated parser’s responsibility;
the interfaces it will present and use; definition and imple-
mentantion of any necessary shim layers; specification of input
languages; and parser generation itself.

In the short term, we plan to enumerate all general kernel
functions called from these protocol implementations; analyze
their similarity both within a single operating system (e.g.,
do all protocol stacks use the same queueing interface?)
and across operating systems; and propose an API for a
universal shim that would allow a single generated parser to
be integrated into a variety of protocol stacks within a variety
of operating systems.
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Fig. 1. Categorized code diagram for IP. Colors correspond to categorizations shown in Tables IV and V; line width corresponds to the length of the individual
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Fig. 2. Categorized code diagram for USB. Colors correspond to categorizations shown in Tables IV and V; line width corresponds to the length of the
individual lines of code.
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Fig. 3. Categorized code diagram for SCSI. Colors correspond to categorizations shown in Tables IV and V; line with corresponds to the length of the
individual lines of code.
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