MVPNalyzer: An Investigative Framework for
Auditing the Security & Privacy of Mobile VPN

Wayne Wang*
University of Michigan
wswang @umich.edu

Robert Stanley
University of Michigan
rsta@umich.edu

Piyush Kumar Sharma

piyush@iitd.ac.in

Abstract—Mobile users increasingly rely on Virtual Private
Networks (VPNs) to protect themselves from tracking, surveil-
lance, and censorship. VPN apps operate from a privileged
position by requiring interception of user traffic. While this safe-
guards end user traffic from malicious network intermediaries
(e.g. surveilling ISPs), it leads to a critical “transfer of trust” from
such network intermediaries to VPN providers. Yet, despite the
sensitivity of this role, VPN apps, especially on mobile platforms,
remain insufficiently audited.

In this work, we present MVPNalyzer, an extensible framework
for systematically analyzing Android VPN apps. Designed to
handle the unique challenges of the Android VPN ecosystem,
MVPNalyzer enables detailed investigation of VPN applications’
behavior across the network layers. We apply our framework to
281 popular VPN apps from the Google Play Store and uncover
fundamental and critical issues: 61 apps transmit unencrypted
data, with 5 sending sensitive VPN configuration files in cleartext,
allowing an attacker to hijack the VPN tunnel connection; 29
apps leak user traffic (including DNS) outside the tunnel; 169
apps fail to obfuscate the traffic to avoid trivial blocking; 76
apps transmit Advertising ID, the device-unique ID widely used
for device and user tracking; and 107 apps fail to implement
the best security practices in their VPN configuration files.
Collectively, these apps have hundreds of millions of installs,
highlighting the scale of users being impacted. Our findings
reveal a troubling pattern of developer negligence, highlighting
how poor enforcement, transparency, and maintenance practices
continue to undermine even fundamental security guarantees.

I. INTRODUCTION

In today’s digital landscape, users navigate a minefield
of privacy and security threats that follow their every click.
The metadata trailing behind a single web request can reveal
one’s most intimate secrets. For example, a domain name by
itself could silently convey one’s sexual orientation, health
conditions, or political allegiances to unseen watchers [1]-
[4]. This digital shadow has escalated from being an ab-
stract concern to a tangible danger; intelligence agencies and

*Authors contributed equally to this work.

Network and Distributed System Security (NDSS) Symposium 2026
23 - 27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231573
www.ndss-symposium.org

Aaron Ortwein*
University of Michigan
aortwein@umich.edu

University of Michigan, IIT Delhi

Enrique Sobrados*
University of New Mexico
esobrados720@unm.edu

Afsah Anwar
University of New Mexico
afsah@unm.edu

Roya Ensafi
University of Michigan
ensafi@umich.edu

corporations weaponize metadata for mass surveillance and
behavioral manipulation with frightening precision [5]|-[7[]. As
a result, users live in constant paranoia, knowing their digital
footprints are being harvested, analyzed, and exploited mostly
without consent [8]], [9].

Over time, Virtual Private Networks (VPNs), now fueling
a growing multi-billion dollar industry [[10]], have found their
way into everyday users’ toolboxes as a crucial defense against
such threats. For millions of users, they represent a simple fix
to a complex security and privacy problem—recent statistics
demonstrate that 82% VPN users believe that VPNs keep them
anonymous [[11]. However, this comes at a cost: the VPN
app sits in a privileged position, viewing, intercepting, and
handling all user traffic. This underscores the need for rigorous
evaluation of VPN apps to ensure they uphold users’ trust.

Previous work has demonstrated that VPNs have caused
numerous security and privacy issues [[12]-[18]]. For instance,
studies have demonstrated that some VPN apps turn end-user
devices into a residential proxy network and monetize them
on residential IP markets [[19], [20]. However, most existing
studies either perform limited analysis of a specific weakness
(detectability, routing security, efc.) [15]-[17] or focus on
desktop platforms [[18]], leaving a gap for systematic evaluation
of the security and privacy issues of mobile VPN apps.

In this work, we develop MVPNalyzer, a systematic frame-
work for analyzing Android VPN apps. MVPNalyzer is de-
signed to be modular and extensible, supporting the periodic
addition of new analyses and tests as privacy and security
threats evolve over time. At a high level, the framework
consists of three main modules—collection, processing, and
analysis—and is structured to easily incorporate new streams
of data and analysis.

Developing such a framework comes with numerous dif-
ficulties where performing certain analyses, while trivial on
desktop apps, become much more challenging in the mobile
ecosystem. For instance, Android provides complex routing
table handling as part of their VpnService API, where
app traffic can be routed not just based on the destination
IP address and firewall marks, but also based on app IDs,
making it challenging to trace the VPN apps’ behavior [21].

MVPNalyzer handles this challenge, along with many others
related to traffic decryption and the inherent restrictions of the
Android platform in performing specific analyses.

We employ MVPNalyzer on a dataset of 281 most popular
VPN apps and ask the question: can users expect VPN
providers to uphold fundamental security and privacy guaran-
tees? To that end, we conduct a detailed investigation geared
towards five specific analyses: (1) whether apps properly tun-
nel all user traffic without leakage, (2) whether apps use secure
and robust communication channels, (3) whether the apps use
hardened security configurations, (4) whether apps exfiltrate
sensitive user or device information to third parties, and (5)
whether apps provide any kind of protection against detection,
especially when they make strong claims of unblockability.

Our findings reveal alarming trends: VPN apps that appear
as top results in user searches are not following even the
bare minimum of security and privacy practices. Surprisingly,
61 VPNs still transfer unencrypted content, leaving them
vulnerable to a range of injection attacks [22], [23]]. In some
cases, even crucial VPN configuration files are transmitted in
cleartext, allowing an on-path adversary to trivially modify or
replace them and redirect the client to unwittingly connect to
an adversary-controlled VPN server. Additionally, despite the
well-documented risks and long-standing awareness of DNS
and traffic leaks, 29 VPNss still fail to provide such protection,
defeating the main purpose of VPNs [13]], [18]. Investigating
the reasons behind leaks reveals that they often arise from
developer negligence and misconfiguration (we found five apps
that encapsulate user traffic, but do not encrypt it). Worse
still, VPN configuration files directly reflect providers’ security
readiness and intentions. Among the apps where we found
such files, more than half fail to implement basic security
hardening measures to protect users against known threats.
Overall, the VPN apps with uncovered security and privacy
lapses have been installed over 2.4 billion times, putting a vast
number of users at risk. We have disclosed the most exploitable
findings to all VPN providers.

Our study highlights the need for a systematic solution to
continuously evaluate mobile VPN apps, where we take a first
step by developing a robust framework called MVPNalyzer.
We envision the framework to be the de-facto system for
analyzing mobile VPN apps going forward and provide better
transparency for stakeholders to take appropriate actions.

II. BACKGROUND AND RELATED WORK

VPNs have become widely adopted by users seeking to by-
pass geoblocking, circumvent network censorship, and protect
their online activity from network observers such as ISPs [24],
[25]. While these services advertise enhancing users’ online
security and privacy, their actual behavior remains opaque. In
this section, we first describe how VPN applications operate
on Android, followed by a review of prior research on the
security and privacy analyses of VPN services.

VPN Backend
Infrastructure

VPN Server

= =

[}
=
=
—

eoa,
i)

VPN Traffic | ; .
H .

I’:Jl> User Traffic -

emetasssssssssassssnessseee” Vedceessssssssssesceccecme®

Fig. 1: Overview of traffic flows in a typical mobile VPN
app. The VPN app 1) communicates with its own backend
infrastructure, 2) contacts third-party services (e.g., ads and
trackers), and 3) captures user traffic and tunnels it to a remote
VPN server. Meanwhile, leakage might happen, exposing user
traffic to observation and manipulation by on-path adversaries.

A. VPNs on Android

Mobile VPNs account for a substantial portion of the
VPN ecosystem, with recent reports estimating that over
60% of VPN users access these services on mobile plat-
forms [26]], [27]]. In contrast to desktop environments—where
clients typically receive elevated privileges to configure routing
tables and tunnel interfaces directly—Android restricts this
access. To operate as a VPN, an Android app must declare
the BIND_VPN_SERVICE permission and implement the
VpnService API, which grants access to a virtual tunnel
interface [28]]. Users are notified of this access via a one-time
approval dialog and a persistent system notification while the
VPN is active [13]. Figure[I]illustrates the high-level structure
of Android VPN traffic. In the bootstrapping phase before the
tunnel is established, VPN apps generate outbound traffic to
their backend infrastructure (e.g., to fetch server lists or deliver
analytics), as well as to third-party services such as advertising
or tracking platforms. Once the tunnel is established, traffic
from other applications is redirected to the tunnel interface,
allowing the VPN app to encapsulate it and send it through
the tunnel; once the VPN server receives the packet inside
the tunnel, it decapsulates it before forwarding to the destined
service. While user traffic is expected to be encrypted and sent
through the tunnel, leaks may occur, either unintentionally
or by design, causing traffic to bypass the tunnel and reach
its destination directly. All three categories of traffic—VPN-
generated traffic, the tunnel connection itself, and any leaked
user traffic—remain observable to a network adversary.

B. VPN Analysis

Despite VPNs’ growing popularity, prior research has re-
vealed vulnerabilities in client software, protocols, and server
infrastructure [[13]], [16], [18], [29]-[32]. Ensuring full security
of VPN applications is complex; the app must utilize secure
communications with third party servers or its backend server
for bootstrapping, securely configure routing tables to avoid

leakage, use an encrypted and securely configured tunnel, and,
in many cases, obfuscate its traffic to avoid being detected.

Studies in the past have uncovered significant security and
privacy concerns. Perta et al. [33] identified IPv6 and DNS
leaks in their analysis of 14 popular VPNs. Khan et al. [|14]] re-
vealed alarming practices such as leaking user traffic in various
ways, and misrepresenting VPN server locations in their eval-
vation of 62 commercial VPN providers. Ramesh et al. [1§]]
systematically analyzed popular desktop VPN providers and
reported findings including traffic leaks and DNS insecurity.
Prior work also identified specific vulnerabilities at the proto-
col and routing levels. Xue et al. [|17]] demonstrated widespread
vulnerabilities caused by VPN client misconfigurations in
routing tables, enabling traffic leaks outside the secure tunnel
across various platforms and VPN services. In an investigation
by Xue et al. [30], despite obfuscation claims, OpenVPN
was shown to be vulnerable to fingerprinting attacks through
observable packet characteristics, enabling targeted blocking.

Few studies [13]], [31], [34] have explicitly focused on
mobile VPNs. Tkram et al. [[13]] conducted the first analysis of
Android VPNs in 2016, analyzing 283 VPN-enabled apps with
runtime analysis on 150 of them, focusing primarily on privacy
violations through third-party tracking and TLS interception
using static analysis combined with limited dynamic testing.
Wilson et al. [31] extended mobile VPN research to iOS,
primarily investigating the unencrypted network traffic of 57
VPNs. Their work highlighted that many apps fail to encrypt
sensitive information such as passwords and VPN configura-
tion files. Zhang et al. [|34]] took a protocol-focused approach,
analyzing OpenVPN configuration files used by Android VPN
apps and uncovering systematic misconfigurations.

Overall, prior studies often focus on isolated components,
smaller VPN datasets, or desktop platforms. In this study, we
develop MVPNalyzer, a systematic, modular, and extensible
framework for conducting large-scale and continuous evalua-
tion of mobile VPN applications.

ITII. MVPNalyzer DESIGN

We design the MVPNalyzer framework to systematically
and comprehensively analyze the security and privacy posture
of mobile VPN apps. The overall design of MVPNalyzer is
depicted in Figure 2] Our primary emphasis is towards making
the framework modular and extensible; as poor security and
privacy practices evolve over time, new analyses and tests must
be added periodically. Thus, the framework is structured to
facilitate the addition of new streams of data collection and
data analysis.

At a high-level, MVPNalyzer consists of three modules: (1)
Data Collection, (2) Data Processing, and (3) Data Analysis.
The Data Collection module is responsible for collecting
different types of attributes and data associated with the app,
including app metadata, network traffic (both encrypted and
decrypted), local storage, efc. The Data Processing module
converts the raw data into an analyzable format. For instance,
the collected network traffic includes all activity from the
mobile device; for a finer analysis, we developed a special

attribution pipeline to identify the traffic generated specifically
by the VPN app. Lastly, the Data Analysis module works on
the raw and processed data to extract meaningful information
and security violations by the VPN apps. Each module works
independently and can be easily extended to add newer data
pipelines and/or analyses. In this work, we show the usefulness
of the framework in identifying various security and privacy
violations and the potential for it to be the de-facto system for
analyzing mobile VPN apps going forward.

In the following sections we detail each module of the
MVPNalyzer framework.

IV. COLLECTION & PROCESSING

Raw data collection is the most essential component of the
MVPNalyzer framework. However, such raw data may not
always be suited for extracting meaningful information and
performing nuanced analysis. Thus, we perform an additional
data processing step, which helps us streamline our subsequent
analysis pipeline. This section details both the data collection
and processing steps.

A. Data Collection

To capture VPN apps’ malpractices, we require detailed
visibility into their functioning as well as evidence of such
practices (e.g., in network traces of such apps). MVPNalyzer’s
Data Collection module collects different types of data to
facilitate a fine-grained analysis. Specifically, for a given app,
we collect app metadata from the Google Play Store, network
traffic (both inside and outside the VPN tunnel), TLS session
keys, opened sockets, and local storage (including caches).
Overall, the data collection consists of four steps: (1) app
metadata collection, (2) instrumentation and configurations,
(3) app execution and tunnel establishment, and (4) user
interaction with and traffic generation via the VPN app.

1) App Metadata Collection: Before running and testing a
VPN application, we first obtain its metadata from the Google
Play Store. Using the google_play_scraper library [35],
we retrieve a wide array of metadata, including but not limited
to the app description, developer information, ratings, and
number of installs.

2) Instrumentation & Configurations: The core functional-
ity of MVPNalyzer requires visibility into the encrypted traffic
generated by the VPN app. Multiple communication vectors,
such as backend API interactions, configuration exchanges,
and contact with third-party advertisement and tracking ser-
vices, are all conducted over the network.

Traffic Decryption: Gaining visibility into TLS traffic
requires the capability to decrypt it. However, common ap-
proaches to TLS decryption on Android are becoming difficult
due to platform and app-level hardening. One popular method
is to install a self-signed root certificate and run a flow-
terminating proxy (e.g., mitmproxy) [36]]. However, since
Android 7.0, apps no longer trust user-added root certificates
by default [37]. Further, the system-provided (and thus trusted)
certificate store is on a read-only disk partition, which cannot
be remounted as read-write on production phones even with

1, N i ®,
1+ [Instrumentation & | i| Raw Data Collection : ! : Unencrypted Traffic :
1+ | Tunnel Connection | : @ - : '
- = : @ ' Traffic ;e . !
' : S Attribution | | SUEPma T Traffic Leak '
: : n . E 0110 gi}gnou : '
v ; WLAN Pcap - - o , '
o ' ' oo —_—! VPN Obfuscation
1 1frun) e ot !
' TUN Poap =— : !
1 1
1 1
= @ App storage : . :
4| e [;
. Data Collection Data Processing

Fig. 2: High-level architecture of the MVPNalyzer framework, comprising of three engines: data collection, data processing,
and data analysis. The system captures raw traffic captures, socket metadata, TLS keys, and app storage, processes it via
attribution and decryption, and supports modular analysis to detect security and privacy issues in Android VPN apps.

root access. Even if we succeeded in installing a self-signed
root certificate to the system store, we still may not be able
to decrypt traffic due to certificate pinning [38]], which causes
the app to terminate TLS connections if the server presents
a certificate that does not match the expected hashes. For
this reason, mobile reverse engineering tools such as Frida
are commonly used to bypass known implementations of
certificate pinning [39], [40]. Unfortunately, Frida’s popularity
has motivated apps to detect its use in a number of ways, such
as by detecting the pt race system call [41]], [42]. On top of
that, Frida is known to crash under certain circumstances [43]].

Thus, we take a more robust approach to traffic decryption,
utilizing function hooking through the LD_PRELOAD environ-
ment variable [44]. The process involves compiling a shared
library that redefines SSL_new, an OpenSSL function that is
invoked when a new SSL connection is initiated and creates
the data structure to store the SSL connection state [45]. We
then set the LD_PRELOAD environment variable to point to
our shared library. When SSL_new is called, the dynamic
linker resolves the symbol to our custom implementation of
SSL_new instead of the real implementation in legitimate
OpenSSL libraries. Our hook logs TLS session keys—which
can be used to decrypt packet captures—before dispatching
execution back to the real SSL_new. This approach avoids
limitations of other popular traffic decryption methods and is
simple, portable, and largely transparent to the app. However,
this approach also presents some implementation challenges.
LD_PRELOAD purely uses the function name to hook and is
not aware of where the original function is defined; returning
program execution to the wrong library can thus cause the app
to crash. To handle this, inspired by [46], we examine the call
stack at runtime to determine which library the intercepted call
originated from, and ensure that we dispatch execution back
to the correct function.

Socket Statistics: We continuously record socket in-
formation throughout the app’s execution by repeatedly
invoking the ss utility [47]. This allows us to cap-
ture all active sockets on the device, along with their
associated five-tuples (src_ip, dst_ip, src_port,
dst_port, proto) and the owning UID identifying the

app responsible for the connection. Although this polling-
based approach may miss very short-lived connections, it
is sufficiently reliable for packet attribution (detailed in
Section [[V-BI). The collected socket information is saved
alongside the packet captures and used during processing in
Section to isolate VPN-generated traffic.

3) App Execution and Tunnel Establishment: Once the
instrumentation and socket metadata collection infrastructure
is in place, we proceed to execute the VPN app and initiate
the connection to its VPN tunnel. After launching the VPN
app, we manually interact with the app to navigate its UI and
complete the VPN tunnel connection process. In contrast to
prior Android analysis studies that use automated tools like
Monkey to simulate random inputs [48[], [49], our approach
favors manual interaction due to the complexity of Ul elements
(e.g., closing pop-ups, watching ads, and in one case, playing
with a virtual pe prior to tunnel connection. Monkey, while
useful for exploring app code paths, generates random input
events and therefore offers no guarantee that the VPN tunnel
will be successfully established. This makes it unsuitable for
our purposes, where tunnel establishment is the most critical
prerequisite for capturing meaningful data for subsequent
analysis. Once a tunnel connection is established, which we
confirm by monitoring for the existence of a tunnel interface,
we start a packet capture on the tunnel interface to observe
traffic going inside the tunnel. This traffic represents all the
flows that the app observed and tunneled to the VPN server.

4) User Traffic Generation: With the VPN tunnel active,
we generate realistic traffic to help us analyze and reveal
how the app handles user traffic. We simulate a common user
scenario: browsing a diverse set of websites in a browser while
connected to a VPN. This traffic forms the basis for detecting
issues such as traffic leaks.

We begin by launching a second t cpdump process on the
tunnel interface to capture in-tunnel traffic that is not visible
on the wireless interface due to VPN tunnel encryption. The
system then visits 50 URLSs, selected from the Tranco list [S0]
by requesting domains and following redirects until reaching a

'Phone Guardian VPN (com.distimo.phoneguardian) requires the user to
pet a virtual husky to connect to the VPN.

live web server, using the Chrome browser. These URLSs reflect
websites commonly accessed by legitimate VPN users, such as
social media platforms blocked by some network adversaries
(e.g., Facebook, X, YouTube) [S1f], [52]], as well as services
that enforce georestrictions (e.g., Netflix) [53]-[55]]. In addi-
tion to popular URLs, we attempt to visit two non-existent,
app-specific domains to help identify DNS leakage. Specifi-
cally, we compute the md5 and shal hashes of the package
name and construct domains of the form www . <hash>. com.
Because these domains are highly unlikely to be contacted by
background processes, their appearance in out-of-tunnel DNS
traffic provides a strong signal of DNS leakage.

Each website is loaded for six seconds to allow page content
and embedded resources to fully load, ensuring the total active
testing period after tunnel establishment exceeds five minutes,
consistent with prior mobile app research [[13]], [48]]. Once the
visits are complete, we terminate the browser and clear its
cache to ensure subsequent tests issue all network requests
rather than retrieving cached content.

As part of the teardown process, we also extract auxiliary
data such as device identifiers (e.g., Advertisement ID, IMEI)
and the app’s local storage files. Although our focus is on
network traffic, this additional context can expose issues not
evident from traffic alone. For example, VPN configuration
files recovered from local storage may reveal tunnel insecurity,
as described in Section We copy all three dedicated
storage locations for the app: credential-encrypted storage
(private storage accessible only after the device is unlocked),
device-encrypted storage (private storage accessible even when
the device is locked), and external storage (shared storage ac-
cessible to any apps granted the appropriate permissions) [S6],
[57]. Finally, all collected data is compressed and transferred
back to the host machine for further processing and analysis.

B. Data Processing

Before analysis, the raw data that MVPNalyzer collects is
processed and transformed into formats suitable for analysis.
In this section, we describe four processing modules: identify-
ing VPN-generated traffic, decrypting TLS flows using session
keys, translating protocols (e.g., converting HTTP/2 traffic into
HTTP/1.1) to ensure compatibility with analysis tools, and
extracting VPN configuration files from local storage.

1) Traffic Attribution: Correctly attributing network traffic
is essential to avoid mischaracterizing app behavior, particu-
larly the information it transmits. Because multiple processes
run concurrently, including system services and our browser
for traffic generation, packet captures will also contain traffic
generated by other apps. This challenge is compounded by
split tunneling, where only some traffic is routed through the
VPN while other flows bypass the tunnel. Without proper
attribution, a flow carrying device fingerprints to a tracking
service, for instance, cannot be definitively linked to the VPN
app, as it may originate from another app on the device.

Thus, using the socket information collected in we
filter each packet capture to retain only packets sent from a
socket opened by the VPN application. Packets are matched to

sockets by five-tuple, and sockets are mapped to applications
using UIDs. We save the resulting VPN-attributed packets to
a separate packet capture that can be used for further analysis.

2) TLS Decryption: Next, we decrypt TLS traffic in the
VPN-attributed packet captures. Because both the wireless
and tunnel interfaces may contain encrypted traffic generated
by the VPN app, we decrypt traffic on both interfaces using
the TLS keys output from our LD_PRELOAD instrumentation
(described in Section and tshark. The decrypted
traffic is then saved to a separate packet capture to avoid
confusion with traffic that was originally unencrypted.

3) Protocol Translation: To support analysis using exist-
ing traffic analysis frameworks such as Zeek, we translate
HTTP /2 traffic to HTTP/1.1. This translation preserves the
semantics of the data but enables existing frameworks to parse
HTTP requests and responses.

4) Extracting VPN Configuration Files: To analyze VPN
configuration files (detailed in section Section , we extract
them from the VPN app’s local storage. While there are
many tunneling protocols, we focus on OpenVPN as it is
the most widely used protocol in our dataset (over 50%
of apps). Although OpenVPN configuration files often use
the .ovpn extension [58]], only 8 out of 108 apps with
such files in our dataset follow this convention. We therefore
use an alternative approach, identifying configuration files by
matching file contents against a minimal set of directives
required to establish an OpenVPN connection (e.g., client,
remote, dev, efc.).

V. ANALYSIS

To comprehensively examine the security and privacy pos-
ture of Android VPN apps, MVPNalyzer applies five analysis
modules that extract structured metrics from collected data.

A. Unencrypted Traffic

Mobile VPN applications are widely perceived as security-
and privacy-enhancing tools, and they occupy a privileged
position on the device where they observe and handle all
user traffic. As a result, failures to encrypt the apps’ own
communications (e.g., fetching server lists and configuration
files) expose users to heightened risks. Thus, this module aims
to identify unencrypted traffic generated by VPN apps and to
characterize the transmitted data and its destinations, which
range from backend VPN control-plane servers to advertising
and tracking infrastructure.

While any unencrypted traffic leaks data to on-path ad-
versaries, the severity of potential attacks depends both on
the content type [59] and how the endpoints handle it (e.g.,
integrity checks or sanitization can mitigate malicious modi-
fications). We check for a range of content types, including
web resources (HTML, JavaScript, and JSON) and specific
files such as VPN configuration files. We note that HTML
and JavaScript may be susceptible to code injection [22],
[23]], while JSON may contain sensitive information that an
adversary can easily modify. Most concerning, however, is
the unencrypted transmission of VPN configuration files, since

modifications can cause a client to connect to an adversary-
controlled VPN server.

To identify unencrypted content types, we use Zeek [60], an
open-source, event-based network traffic analysis framework
widely used in security research and operations. Zeek parses
the application-layer protocol and filters for HTTP traffic. For
each HTTP message, we use Zeek’s built-in signatures to
determine the content type. We further refine the approach
by searching for <script> tags in HTML to identify cases
of embedded JavaScript, which the built-in signatures do not
capture. To detect configuration files and JSON, we develop
custom parsers in Spicy, a parser generator language whose
parsers can be integrated into Zeek [61]. Our JSON parser
implements the JSON grammar [|62]], and our configuration file
parser is loosely modeled on the one used by the OpenVPN
Android app [63]]. All detected unencrypted content types are
then stored for subsequent analysis.

B. Traffic Leaks

While VPN applications are expected to tunnel all user
traffic securely, leaks remain a persistent issue in practice.
Such leaks violate the core guarantee of VPNs and expose
user data to network intermediaries. This module focuses on
identifying three types of leaks: (1) DNS leaks, where DNS
queries are sent outside of the tunnel; (2) user traffic leaks,
where traffic from other applications fails to be tunneled; and
(3) unencrypted tunnels, where user traffic is tunneled over
unencrypted protocols like HTTP or SOCKS.

DNS Leaks: To detect DNS leaks, we monitor DNS re-
quests on the wireless interface after tunnel establishment and
check for requests to domains visited in Section On
Android, DNS requests are typically issued by the system
resolver rather than individual applications, which prevents
our packet attribution method from identifying their source.
Moreover, since MVPNalyzer visits popular domains from the
Tranco list, incidental overlap with domains contacted by the
VPN app itself is possible, so out-of-tunnel DNS queries do
not always indicate a DNS leak. We therefore flag a DNS leak
if either (1) a significant proportion (90%) of domains visited
by MVPNalyzer appear in out-of-tunnel DNS traffic, or (2) any
of the “unique hash” domains (as described in Section [[V-A4)
appear in DNS requests outside the tunnel.

User Traffic Leaks: When user traffic leaks outside the
tunnel, the core security guarantee of a VPN is undermined,
leaving traffic vulnerable to the same attacks as if no VPN
were used. Because MVPNalyzer visits all websites over
HTTPS, we detect user traffic leaks by inspecting the Server
Name Indication (SNI) extension of TLS Client Hello mes-
sages in out-of-tunnel traffic for visited domains. The presence
of these domains indicates a leak but does not reveal whether
it is due to misconfigured routing rules or tunnel failure. To
make this distinction, MVPNalyzer records whether the tunnel
interface still exists at the end of testing; we classify traffic as
leaked only if the tunnel interface remains active. Similar to
DNS leaks, we conclude that a VPN app leaks user traffic if a
large proportion (90%) of visited domains appear outside the

tunnel. Finally, we note that the VPN app itself might send
traffic outside the tunnel even when connected, but we do not
consider this a leak since traffic originates from the VPN app
rather than from the user’s activities in other applications.

Unencrypted Tunnels: Tunneling user traffic through un-
encrypted protocols can conceal a user’s IP address from an
end server but leaves the traffic vulnerable to surveillance or
blocking by network intermediaries. To detect unencrypted
tunnels, we examine the transport-layer payloads of packets
on the wireless interface. If a large proportion (90%) of visited
domains appear in the payloads but not in standard protocol
fields (e.g., TLS SNI or DNS query name), we infer that the
app is tunneling traffic without encryption.

C. VPN Obfuscation

As VPNs are increasingly used for censorship circum-
vention, network adversaries, including ISPs and nation-state
censors, have developed a range of techniques to detect and
block VPN traffic [64]-[68]. While some VPN apps advertise
resistance to blocking, such promises are only meaningful if
measures are taken to avoid detection. In this module, we
assess whether a VPN app implements any basic obfuscation
to evade simple detection or blocking measures. Specifically,
we test for three indicators of VPN traffic: (1) traffic over
well-known VPN protocol ports, (2) protocol signatures rec-
ognizable by standard parsers, and (3) domains in DNS or TLS
traffic that suggest contact with VPN servers (e.g., the presence
of the string “vpn” or the package name in the domain).

Standard Ports: Traffic over standard and default ports
used by circumvention tools, including VPNs, has previ-
ously been targeted for blocking [69]], [[70]. We therefore
check for traffic on well-known VPN ports: 500/udp and
4500 /udp for IPsec, 1194 /udp and 1194 /tcp for Open-
VPN, 1701/udp for L2TP, 1723/udp for PPTP, and
51820 /udp for WireGuard.

Protocol Parsing: Well-known VPN protocols, when used
without obfuscation, can be detected by adversaries using stan-
dard protocol parsers. To identify the use of such protocols,
we leverage the protocol parsers built into nDPI [71f], an
open-source deep packet inspection (DPI) toolkit for traffic
classification. Unlike alternative traffic analysis tools such as
Wireshark, which often rely on port numbers for protocol
identification, nDPI applies signature- and heuristic-based de-
tection to identify protocols regardless of port, allowing us
to detect VPN traffic even when apps use non-standard ports.
Successful identification of a common tunnel protocol suggests
that the VPN app makes a limited attempt at obfuscation.

VPN Domains: While tunnel traffic can be obfuscated to
evade detection, VPN-related metadata may still reveal a user’s
VPN usage and potentially put them at risk. In particular, DNS
queries and TLS Client Hello SNIs observed in out-of-tunnel
traffic may indicate connections to VPN services. To detect
this, we check DNS queries and TLS Client Hello SNI fields
for domains containing either (1) the substring “vpn”, which
prior work has used to identify VPN usage [[72f, or (2) any
portion of the application’s package name. Because Android

application package names are conventionally structured as
reverse domain names, as recommended in Java [[73]], we ex-
clude common suffixes by removing package name segments
that appear in the Public Suffix List [[74].

D. Tracking and Fingerprinting

Advertising, tracking, and device fingerprinting are common
monetization strategies for free VPN services [75]]. However,
when users transfer trust to VPN applications, they often
expect increased privacy [12f, [25]. In addition, VPNs have
become part of the essential digital toolkit for users at risk of
targeted surveillance [24]]. Thus, tracking and fingerprinting
by VPN applications undermine these privacy expectations.
To evaluate apps’ tracking and fingerprinting practices, we
analyze outbound communications to advertisers and trackers,
as well as the types of data transmitted.

This analysis requires examining all traffic generated by the
VPN app—including cleartext and decrypted HTTPS traffic—
using the attribution and decryption techniques described in
Section Because VPNs may generate their own traffic
within the tunnel alongside user traffic, we inspect VPN-
attributed packets on both the tunnel and wireless interfaces.
We then extract contacted URLs and compare them against
popular filter lists like EasyList and EasyPrivacy [76].

We also examine exfiltrated data to assess whether it could
enable tracking or device fingerprinting. Following prior work
[77], MVPNalyzer leverages the tendency of Android apps to
transmit information in structured key-value pairs. We extract
these pairs from three parts of the application-layer payload:
(1) non-standard HTTP headers (i.e., excluding those defined
in RFCs), (2) query string parameters in HTTP GET requests,
and (3) HTTP POST request bodies. For POST requests, we
restrict analysis to form-encoded or JSON data. These are
identified using text patterns rather than the Content-Type
header, allowing us to extract key-value pairs even when this
header is missing or incorrect.

To characterize the type of data being exfiltrated, we cate-
gorize the extracted key—value pairs based on their semantic
content. Specifically, we use regular expressions to search
all extracted pairs for device attributes (make, model, IMEI,
serial number, MAC address, screen size, Android version,
Android API level, and Advertising ID), location information
(IP address, coordinates, city, timezone, and country), and
language information. Among these, the Advertising ID and IP
address or geographic coordinates are particularly concerning,
as they enable persistent and precise user tracking across
sessions and services. The Advertising ID was introduced as
a privacy-preserving alternative to hardware-bound identifiers
like the IMEI and is designed to be resettable and, since 2021,
deletable [[78]]. In practice, however, most users are unaware
of its existence, let alone how or when to reset or delete it,
which limits its effectiveness [79]].

E. VPN Configuration

VPN apps use configuration files to define the settings of
the tunnel. These files specify parameters through directives,

client

dev tun

remote my.vpn.server 1194 udp
cipher AES-256-CBC
auth-user—-pass

ca ca.crt

Fig. 3: OpenVPN client configuration file (client.ovpn).
Each line contains a directive followed by zero or more
parameters, which are shown in ifalic.

which instruct the VPN client and server on how to establish
or manage the tunnel (Figure [3] shows a sample configuration
file). For example, the remote and cipher directives specify
the server’s IP address and encryption method, respectively.

Each VPN protocol defines a different set of configuration
directives. While some protocols have straightforward config-
urations, others offer more complex combinations to provide
flexibility for specific use cases. However, without sufficient
security awareness, this versatility can lead to misconfigu-
rations that expose users to significant risks. We focus on
analyzing OpenVPN configuration files because more than half
the apps in our dataset default to OpenVPN.

We base our analysis on the latest OpenVPN version (2.6).
We reviewed the reference manual [80] to identify directives
with security implications, including security features, best
practices, and hardening recommendations [81]. Across the
configuration files in our dataset (refer to Section [V-B4), we
find 18 directives with associated security risks. We use these
directives to classify apps into four categories based on their
compliance with best practices and recommendations.

Insecure Cryptography: It is important that VPN providers
use secure ciphers that comply with OpenVPN recommen-
dations, as weak algorithms can expose users to traffic
decryption or machine-in-the-middle (MITM) attacks [34].
We identify weak cryptography through insecure -cipher
choices (e.g., Blowfish, 3DES) specified in the cipher or
data-ciphers directives, as well as missing authentication
in the auth directive.

Weak Authentication: Strong authentication prevents
unauthorized access to VPN servers and protects other users
sharing the infrastructure. OpenVPN supports username/-
password and client-certificate authentication, and combining
them as multi-factor authentication can significantly improve
security [82]. We therefore check for both mechanisms:
auth-user-pass for username/password authentication
and cert/key for client-certificate authentication.

Deprecated Directives: OpenVPN regularly updates its
directives—introducing new ones and deprecating or removing
outdated ones that pose security risks—to align with state-
of-the-art security practices. While OpenVPN still supports
deprecated directives to maintain backward compatibility,

€ 40

>

o

o 24 22

<(gzo 16 1413

8 766 6 6 5
4 3
0 I Bemsceseacszzzain

Unencrypted {]

Leak I [J
Obfuscation [} I

Tracking

OVPN Config

Fig. 4: Intersection of VPN app behaviors across the five
analysis modules (traffic leaks, unencrypted content, VPN
obfuscation, tracking/fingerprinting, and configuration issues).

adopting the latest security features should remain a priority
for VPNs given their role as security- and privacy-enhancing
tools. We quantify the use of directives marked as deprecated
in OpenVPN documentation [83].

Hardening Options: OpenVPN provides several configu-
ration options to mitigate known attacks against VPNs [80],
[81]. While not required for functionality, their use
demonstrates commitment to security. We therefore check
for directives such as tls—auth, tls-crypt, and
tls—-crypt-v2, which authenticate control-channel mes-
sages, and verify-x509-name and remote-cert-tls,
which verify the server’s identity to prevent impersonation.

VI. RESULTS

In this section, we present results from our systematic
investigation of popular VPN apps using the MVPNalyzer
framework. We follow the analysis outlined in Section [V]
and report our findings across five categories. The aggregated
results are shown in Figure [

To evaluate whether Android VPN apps uphold their ad-
vertised guarantees, we curated a dataset of 281 operational
VPNs from the Google Play Store. We began by scraping
search results for 40 VPN-related search terms (e.g., “fast
VPN”, “VPN for gamers”, etc.), as well as the “VPN &
Proxy Tools” app category, across all supported countries
in November 2024. A complete list of the search terms is
provided in Table [Because the web interface returns at
most 30 apps per query, this process yielded up to 1,200
results per country. Although searches within the Android
Play Store app return more results, they remain incomplete
and are significantly harder to collect given the complexity of
robust Android UI automation. We then constructed a global
set of unique apps across all search terms and regions. From
this set, we automated downloads from the U.S. Play Store
onto a physical Android 14 device. Apps that were not free to
download were skipped, and successfully downloaded APKs
were extracted for testing.

Despite using VPN-related keywords in our searches, not
all apps requested the BIND_VPN_SERVICE permission;
we examined only those that did. We excluded apps that
required an account or in-app payment to use the service,

Google Play Store Search Terms

VPN VPN app Secure VPN
Fast VPN Free VPN Unlimited VPN
VPN proxy VPN for privacy VPN with no logs

VPN with split tunneling
VPN with kill switch
VPN for Android

VPN for torrenting

VPN for streaming

VPN with multiple servers
VPN for public Wi-Fi
VPN for school

VPN for gaming
VPN with encryption
VPN for travel

VPN for work

High-speed VPN Low-latency VPN Reliable VPN

Best free VPN Premium VPN Cheap VPN

Trial VPN VPN for Netflix VPN for sports streaming
VPN for YouTube Private VPN Anonymous VPN

Fast free VPN
Unlimited free VPN

VPN with strong encryption
Best VPN for streaming
VPN and proxy tools

Secure private VPN
No-logs secure VPN

TABLE I: Complete list of VPN-related search terms queried
across all supported countries on Google Play Store during
our evaluation dataset construction.

provided only VPN client functionality EL or required updates
at the time of testing (to keep download dates consistent). We
then tested the remaining apps, removing those that failed to
launch or could not establish a VPN connection. Among the
functioning VPN apps, our traffic-leak analysis revealed that
some failed to tunnel browser traffic. We manually examined
these apps and filtered out those explicitly claiming not to
be general-purpose VPNs—that is, while they use Android’s
VPN interface, they either do not tunnel all user traffic (e.g.,
tunnel only to streaming services) or repurpose the interface
for other network-management tasks (e.g., anti-virus apps that
block connections to malicious websites or DNS changer apps
that modify the default resolver).

We ran MVPNalyzer’s Data Collection module on OnePlus
Nord 5G (CPH2513) devices running Android 14, the latest
production version at the time of experimentation. Data Pro-
cessing and Analysis were subsequently performed on a Linux
machine running Ubuntu 22.04.

A. Unencrypted Traffic

In this subsection, we analyze the network traffic of mobile
VPN apps that transmit unencrypted data outside the tunnel.
We present our findings on the presence of such traffic, the
types of data exposed, and their security implications.

Unencrypted Traffic Volume: Overall, we observed 10,552
unencrypted flows across 61 VPN apps. Figure [5] shows the
number of unique unencrypted flows generated by each app,
categorized by content type (i.e., HTML, JavaScript, JSON,
and VPN configuration files). Notably, 32 apps generated at
least five unencrypted flows, with com. kylovpn sending the
most (2,075). Alarmingly, most apps transmitting unencrypted
content are highly popular, averaging 11.16 million installs.

Categorizing Requested URLs: To further analyze the
cleartext traffic sent by VPN apps, we examined the endpoints
contacted in unencrypted web requests. We categorized these
URLs using VirusTotal, selecting the ForcePoint engine as

2Apps that do not provide a VPN service but function solely as clients,
requiring users to supply their own configuration files for external VPN servers
not managed by the app.

Category Count Example

Information Technology 120 http://ip-api.com/json

‘Web Infrastructure 114 http://gstatic.com

Suspicious Content 47 http://txcdn-res.lifegram.cc/.../source-filter-draw.zip
Web Images 28 http://103.255.209.161/img/circle, ews.png
Dynamic Content 27 http://api.dundundun.online/getconf?uid=...&...
Elevated Exposure 19 http://ip3.6016725.xyz/github.com/Alvin9999
Shopping 7 http://chunchuan kejixiaoqi666.store/

Business & Economy 7 http://creators.trueid.net

Advertisements 6 http://tpc.googlesyndication.com/sodar/....html
Travel 5 http://us-host.non-vpn.com/world_v65/file
Proxy Avoidance 3 http://www.vpngate.net/api/iphone/
Entertainment 3 http://txcdn1-file-m.mvbox.cn/....jpg.mm.webp

VPN Infrastructure 105 http://download.tikvpn.in/.../America@3x.png

TABLE II: Categorization of all unique URLs found in
cleartext traffic by the ForcePoint classification engine. VPN
Infrastructure URLs were separately identified.

the most effective for our dataset; it successfully categorized
391 of 604 URLs, summarized in Table Notably, 47
domains were classified as suspicious and 19 as elevated
exposure (sites that “camouflage” their identity), based on
URL reputation [84]. The most frequently contacted domain
was ip—api . com, which is used by 18 applications for client
IP geolocation. The free version of this API—intended for
non-commercial use—is only available over HTTP [[85]], with
HTTPS restricted to paid tiers. We further categorized URLs
using the same string-matching technique described in Sec-
tion[V-C]to identify those associated with VPN backend infras-
tructure, finding 105 such URLSs across 21 apps. These findings
show that some app developers, despite likely controlling their
backend services, still opt for insecure communication.

Transparency: After observing such a large volume of
unencrypted requests, we sought to determine whether VPN
providers explicitly declare their intention to transmit cleartext
traffic, or more importantly, whether they attempt to conceal
it. To investigate this, we examined app-level declarations.

Android 6 introduced the usesCleartextTraffic
flag, which is specified in the Android Manifest and allows
developers to declare an intention to transmit cleartext (e.g.,
HTTP, WebSocket) traffic [86]]. Since Android 7, developers
have also been able to define a Network Security Configuration
file [87], which provides finer-grained control over networking.
Its cleartextTrafficPermitted flag likewise speci-
fies whether cleartext connections are allowed, but unlike
usesCleartextTraffic, it also permits exceptions for
specific domains. Starting with Android 9, this flag is disabled
by default, preventing cleartext connections [88]]. Defining the
Network Security Configuration is optional, but if present,
cleartextTrafficPermitted takes precedence over
usesCleartextTraffic.

We analyzed the Android Manifest
Security Configuration files of all apps to identify
their cleartext settings. We found 203 apps that
set either the usesCleartextTraffic or
cleartextTrafficPermitted flag for at least

and Network

g, Number of Installs
n 103 O
g 1 com.kylovpn 100K 1M 10M
o
Q
& 102
o4 . $
Y T
S} B
=)o
Q.01) ®
21018 :
&
=} y ® ¢
=2 \ ®
100 [—\) é (il @

k Other '

HTML Javascript JSON OVPN Config

Fig. 5: Numbers of unencrypted flows for different content
categories. Each dot represents an app.

one domain. Of these, 66 apps allowed cleartext traffic on
all domains via cleartextTrafficPermitted, and 88
apps did so via usesCleartextTraffic. Among the 61
apps observed transmitting cleartext traffic, 53 declared their
intention to do so.

The remaining 8 disabled both flags yet still transmitted
cleartext traffic. Further investigation revealed that, although
apps and libraries are expected to respect these flags, some
low-level network APIs cannot enforce cleartext blocking
because they cannot distinguish whether content is encrypted
or not [86]. Thus, using low-level socket APIs can serve as a
method for bypassing cleartext protections.

In summary, the transmission of cleartext traffic by VPN
apps requires developers to actively circumvent multiple net-
work security protections built into Android—either by dis-
abling blocking of cleartext traffic by higher-level networking
APIs or intentionally using low-level networking APIs that are
incapable of blocking cleartext traffic.

Vulnerability to Injection: The presence of cleartext traffic
in applications not only enables surveillance but also allows
network intermediaries to modify user traffic, facilitating injec-
tion attacks that can compromise device security. The severity
of such attacks depends on the type of data transferred [59].
Cleartext HTML and JavaScript enable adversaries to inject
advertisements or malicious code [22], [23]. Similarly, key-
value pairs in JSON data can be modified or replaced to dictate
app behavior. VPN apps introduce yet another injection vector
when client configuration files are transmitted in cleartext.

We identified 5 apps that receive configuration files in clear-
text. Consequently, they are susceptible to tunnel hijacking,
where a network intermediary induces a client to connect to an
attacker-controlled VPN server. We confirmed the feasibility
of this attack on VPN apps installed on mobile devices under
our control, demonstrating both its practicality and its serious
implications for users.

Leak Type Apps

DNS Leak (24) Java VPN, Noon VPN, AM TUNNEL LITE VPN, AM
TUNNEL PRO, MahsaNG, GoFly VPN, Ostrich VPN,
NewNode VPN, Cookie, Delight VPN, Phone Guardian,
RoboProxy, Kylo Vpn, LVCHA VPN, XY VPN, Take Off,
Tesla Proxy Pro, Global VPN, Air Net VPN, FoxoVPN,
Bolt VPN, Free VPN, Siam VPN, Nine Tail VPN

Traffic Leak (6) Java VPN, Noon VPN, NewNode VPN, Phone Guardian,

Unicorn HTTPS, Free VPN

Unencrypted

Tunnel (4) Geo Tunnel, Raytunnel, Rosa VPN, V2net

TABLE III: Types of leakage with the corresponding VPNs.

e Y

Takeaway: Despite 98% of Internet traffic being encrypted
as of April 2025 [89], we identified 61 VPN apps that
still transmit cleartext traffic. Particularly concerning is the
exposure of configuration files, which enables a network
adversary to hijack the VPN tunnel. Notably, 8 apps bypass
the cleartext protections of Android’s networking APIs,
showing that although the platform provides mechanisms
to encourage secure communication, the lack of strict
enforcement leaves exploitable gaps.

\

B. Traffic Leaks

Traffic leaks defeat one of the core purposes of VPNs: pro-
tecting user traffic from observation or tampering by network
intermediaries. This subsection quantifies such leaks, focusing
on DNS leaks, user traffic leaks, and unencrypted tunnels.

MVPNalyzer’s Data Collection module visits 50 URLSs
through the browser. Ideally, if the domains of these sites
appear in out-of-tunnel traffic, we classify it as a leak. How-
ever, the VPN app itself may also generate requests to those
domains. To ensure that leaks reflect user traffic, we set a
threshold: if we see 90% of the visited domains appear outside
the tunnel, we classify the app as leaking traffic.

DNS Leaks: We identified 24 apps that leak DNS traffic.
These apps have a combined 360 million installs, highlight-
ing the scale of users whose traffic is exposed to network
adversaries despite assumptions of VPN protection. Of these
apps, 20 send requests to the client’s local resolver and 6
send requests to public resolvers (Google, Cloudflare, AliDNS,
and DNSPod). Because some apps use multiple resolvers,
the sum of these counts exceeds the total number of leaking
apps. The use of well-known public resolvers suggests that
developers are aware of the risks of ISP resolvers, but this
does not eliminate the possibility of DNS injection by on-path
adversaries or malicious behavior by the resolvers themselves.

User Traffic Leaks: We found 6 apps leaking browser
traffic outside the tunnel, as indicated by TLS Client Hello
SNIs. On further investigation, we manually verified that the
descriptions of these apps contain no explicit mention of split
tunneling, where only a subset of user traffic is tunneled.
Together, these apps account for 54 million installs, indicating
that a significant number of users are affected.

Unencrypted Tunnels: Lastly, we identified 4 apps that
contained the domains we visited in the transport layer payload
of non-DNS, non-TLS traffic. This may occur when an app

10

encapsulates web requests in transport layer payloads (e.g., in
proxying protocols such as SOCKS) without encryption. We
manually confirmed that these apps use unencrypted tunnels,
thereby leaking visited domains.

~

Takeaway: Our findings demonstrate that leakage occurs
across the network layers for 29 out of 281 apps. Very few
of these apps are transparent about not tunneling certain
user traffic, likely leaving users unaware of the true extent
of protection provided by the VPN. The use of unencrypted
tunnels in some cases highlights developers’ negligence of
fundamental security guarantees. Ultimately, traffic leaks
undermine the core purpose of VPNSs: to protect user traffic.

J

C. VPN Obfuscation

VPN traffic has been a target of blocking by many nation-
state censors [52], [66]], [67], [90]. While advanced state-of-
the-art attacks exist for identifying sophisticated obfuscated
VPNs [30], [91], [92], many censors block VPNs using
simpler techniques such as standard port blocking or protocol
parsing [64]], [65]], [68].

We investigate the susceptibility of VPN apps in our dataset
to simple blocking measures. Specifically, we test 1) whether
traffic is sent to standard VPN ports, 2) whether standard
protocol parsers can identify the VPN tunnel protocol, and
lastly 3) whether the DNS or TLS traffic is destined to
domains containing the string “vpn”. Using these techniques,
we identified 169 apps as VPNs. Port checks identified 54
apps, the protocol parser identified 117 apps as using either
OpenVPN, IPsec, or Wireguard, and the “vpn” string search
identified 101 apps.

We corroborated our findings with the claims of these VPN,
identifying cases where VPNs advertise blocking resistance
but make no effort to implement it. To this end, we analyzed
the Google Play Store descriptions of the 169 apps vulnerable
to trivial VPN detection. We found 45 apps making explicit
claims of unblockability and 65 making implicit claims. Note
that we categorize any direct mention of censorship circum-
vention as an explicit claim of unblockability (e.g.,“Bypass [...]
internet filters and censorship”), while claims of unlimited ac-
cess to blocked content are considered implicit (e.g.,”Unblock
websites and restricted web content™).

r

Takeaway: We found that more than half of the apps we
analyzed were vulnerable to trivial VPN traffic detection
using either standard open-source DPI solutions or simple
string matching in DNS queries and SNI fields. Notably,
nearly two-thirds of these VPNs claim, either implicitly or
explicitly, to resist detection, thereby misleading end users.

\

J

D. Tracking and Fingerprinting

In this subsection, we characterize the prevalence of track-
ing and device fingerprinting behavior in the studied apps,
focusing on the tracking URLs they contact and the device
fingerprints they exfiltrate.

Category Attribute App Example Category Check Apps Unique Combined
Count Apps Installs
Device AdID 76 {“adid™: ..’} Weak Cipher 20
Make 176 {“make”: “OnePlus”} Insecure Cryptography Msg Auth 9 20 (18.5%) 40M+
Model 210 {“model: “CPH2513"} >
OS Type 209 {“0s™: “android”} Weak Authentication ~ rame/Passwd 9 (89%) 728M+
OS Version 177 {“osv™: “147} Client Cert 74
Android API Level 184 {“android_api_level”: “34”} Com .
N pression 12
Display 28 {“screen_size™: “1080x2400”} Deprecated Directives Others 6 12 (11%) 513M+
Location ~ Coordinates 1 {“lon”: -00.0000000”} :
P 38 {9p™ “xxxx” Hardening Options i?M\:é‘f%Ls 22 61 (56.4%) 601M+
City 3 {“city”: “xxxxxx"}
Countr 130 “country”: “US” . .
Uy {“ o } TABLE V: OpenVPN configuration file analysis. Numbers
Timezone 12 {“timezone™: “est”} 3 .
represent the count of configuration files that fail each check.
Language Language 191 {“language_code”: “en-US”}

TABLE IV: Different types of device data sent to trackers.

Identifying Tracking Behavior: We extracted all URLs
contacted by the VPN apps (both inside and outside the tunnel,
including cleartext and decrypted HTTPS traffic) and matched
them against widely used lists of advertising and tracking
domains. Specifically, we used EasyList and its supplement
EasyPrivacy [76], as well as the Disconnect list [93], which
underlies the Disconnect browser extension and Firefox’s
tracking protection [94]]. Because these three lists are generic
and cross-platform, we also included the AdGuard mobile
list [95]], which is tailored for mobile apps. In total, 246 apps
(over 80%) contacted 3,714 unique advertising and tracking
URLSs according to these lists.

Identifying Exfiltrated Data: Next, we examined the types
of user and device attributes exfiltrated by VPN apps that are
particularly relevant for tracking and device fingerprinting.
As described in Section we extracted structured key-
value pairs from network traffic and searched for known
attributes associated with our test device. Among these pairs—
summarized in Table [V]l—we focus on three identifiers: the
Advertising ID, the device’s IP address, and geographic coor-
dinates. The Advertising ID, uniquely identifying on its own,
was transmitted by 76 apps. Although resettable and deletable,
it remains the primary persistent identifier available to third-
party apps, since Android 10 and above restrict access to
hardware identifiers such as the IMEI and serial number [96]—
[98]]. Meanwhile, 38 apps exfiltrated our device’s IP address,
and 1 app transmitted precise geographic coordinates. While
the IP address and approximate geolocation can easily be
inferred by the VPN server, its presence in application-layer
key-value pairs reflects intentional collection and transmission
by the app, establishing a lower bound on IP-based tracking.

Significance of Exfiltrated Data: Beyond these identifiers,
we also observed widespread exfiltration of other device
attributes: 210 apps transmitted our device model, 184 the
Android API level, and 177 the OS version. While these
values are not uniquely identifying on their own, they can be
combined to create distinct device fingerprints [99]. Because
our devices run Android 14, we did not observe persistent
hardware identifiers such as the IMEI or serial number,
which have been restricted since Android 10. However, the

11

Adpvertising ID, though resettable, requires manual action by
the user, and is therefore rarely changed in practice. As a
result, most users remain vulnerable to cross-app and persistent
tracking. Despite Android’s efforts to limit access to hard-
ware identifiers, device configurations inherently differ due
to manufacturing decisions and user preferences [[100]], [101].
Collecting enough of these seemingly benign attributes allows
advertisers and trackers to distinguish individual devices and
thereby circumvent Android’s privacy protections.

r

Takeaway: We found that 76 VPN apps exfiltrate the
Advertising ID, a persistent identifier available to third-
party apps. Additionally, a large number of apps (over 200
in some categories) exfiltrated device attributes, such as
model, OS version, and screen size. While these attributes
are not uniquely identifying on their own, they can be
combined to construct a complete device fingerprint.

\

E. VPN Configuration

We identified 108 applications containing at least one Open-
VPN configuration file, with the number of such configuration
files ranging from 1 and 186 per application. These files are
spread across various directories in local storage, with the
cache directory (94%) being the most common. However, an
app will use only one configuration file per connection. When
an app includes multiple configuration files, we analyzed the
one showing the strongest evidence of alignment with best
practices, providing an optimistic upper bound on the app’s
security posture.

Alarmingly, only one application complies with all eval-
uated security best practices. In contrast, 107 applications
exhibit at least one potential security issue across one or more
of the following categories: Insecure Cryptography (18.5%),
Weak Authentication (89%), Deprecated Directives (11%), and
Hardening Options (56.4%).

Insecure Cryptography: As depicted in Table we
identified 20 (18.5%) applications with potentially weak tunnel
encryption, collectively accounting for over 40 million installs.
Among these, three (2.7%) applications explicitly set the
data-ciphers directive to none. In the latest OpenVPN
releases (2.5-2.6), this allows negotiation of no encryption in
the data channel, resulting in an unencrypted tunnel [102].

Moreover, we find eight (7.4%) applications that set the
cipher directive to none. In OpenVPN versions < 2.4,
setting it to none will disable tunnel encryption. However,
in newer versions, this directive has been replaced by data-
ciphers, and setting cipher alone no longer controls encryption
behavior [80]]. Disabling encryption enables a network attacker
to intercept all tunnel traffic, and even if apps implements
custom obfuscation, prior work has found such mechanisms
to be weak and not recommended [34]].

The remaining 20 applications did not explicitly disable
encryption but instead rely on insecure or outdated ciphers.
Specifically, we find 8 applications (7.4%) that do not define
the cipher directive, in which case OpenVPN (versions
< 2.4) defaults to Blowfish. Blowfish has been shown to
be vulnerable to birthday attacks (CVE-2016-6329) [103].
Furthermore, one (0.9%) application explicitly set the cipher
to DES-EDE3-CBC, which is affected by a high severity
vulnerability (CVE-2016-2183) [[104].

Finally, OpenVPN employs Hash-based Message Authenti-
cation Codes (HMACsS) to ensure the integrity of data pack-
ets [105)]. This mechanism prevents tampered packets from
being accepted by the client or server. As such, disabling
HMAC allows machine-in-the-middle attackers to manipulate
user traffic without detection. We identify 9 (8.3%) apps that
disable HMAC, making them susceptible to such attacks.

Weak Authentication: As shown in Table we iden-
tified 96 applications (88.8%) that rely on only a single
authentication mechanism (either a username/password or a
client certificate). This weakens authentication and increases
the risk of unauthorized access [82]. A majority (68.5%
or 74) of the apps rely solely on client certificates, which
grant access if the configuration file is leaked. The risk is
amplified when a server allows multiple connections using
the same certificate. Such scenarios can enable attackers to
exploit vulnerable peers’ services, as demonstrated by the
“port shadow” vulnerability [16]. Additionally, 22 apps rely
solely on username/password, which significantly increases the
risk of unauthorized access if the credentials are compromised.
In both cases, the absence of multi-factor authentication leaves
users vulnerable to impersonation attacks. Together, these apps
have over 728 million installs.

Deprecated Directives: As presented in Table [V] we
identified 12 (11%) apps, with over 513 million cumulative
installs, that use at least one deprecated directive. The most
common are comp—1zo (10 apps or 9%) and compress (2
apps or 1.8%), which were deprecated in OpenVPN 2.4 and
2.5, respectively. OpenVPN strongly recommends avoiding
compression unless it is strictly necessary, due to susceptibility
to the VORACLE attack [106]-[108]]. Additionally, 4 apps
(3.7%) include the deprecated ns—-cert—-type directive, and
two (1.85%) use tun—ipv6. We argue that the presence of
obsolete directives reflects poor security readiness, highlight-
ing a lack of maintenance and disregard for security guidelines.

Hardening Practices: Based on the data in Table
we find 61 (57.4%) apps that do not implement directives
designed to prioritize security. In particular, 56 (51.8%) apps

12

do not use tls—auth, tls—crypt, or tls—-crypt-v2.
These directives protect against DoS attacks, port scanning,
buffer overflows, and SSL/TLS handshakes from unauthorized
machines by implementing an additional HMAC signature
over the control channel packets [81]. We then examined
whether clients verify the server identification during au-
thentication. We find 38 (35.1%) apps that do not perform
this verification, making them vulnerable to server imper-
sonation attacks. As such, an MITM adversary can force
a user to connect to a malicious server by impersonat-
ing the legitimate one. To protect users against this threat,
OpenVPN recommends including at least one of the follow-
ing directives: remote—cert-tls, verify-x509-name,
peer-fingerprint, or verify-tls [80].

However, we found no usage of the peer-fingerprint
or verify-tls directives in any app in our dataset;
84 (77.7%) apps do not verify the server name using
verify-x509-name, and 38 (34.2%) do not verify the
server certificate using remote-cert-tls. Collectively,
apps lacking these hardening options account for over 601
million installs.

Insecure Parameter Usage in Practice: While we found
clear evidence of client configurations specifying weak pa-
rameters, we did not uncover whether they were used in
practice. The client-side configurations may request specific
parameters that the server-side configurations can override
during a negotiation phase. That being said, the client-side
configurations should not have such weak options to start with,
and they should not be left to the server side to enforce stricter
checks, especially when the client-side code is controlled by
the same developers. The vulnerability to man-in-the-middle
attacks that we uncovered is an example of a case where such
weak configurations can have severe consequences for end
users. We hope developers will eventually discontinue such
practices and ship hardened client-side configurations.

Takeaway: Overall, only one app (out of 108 analyzed)
follows all the criteria for following best practices. About
18.5% of apps expose users to insecure cryptography and
88.8% do not use recommended authentication methods.
Furthermore, 11% of apps expose users to severe attacks by
retaining deprecated directives, reflecting poor maintenance
practices and limited security readiness, all while 56.4% of
apps fail to implement security hardening directives.

VII. DISCUSSION

Limitations of Play Store Disclosures: The Google Play
Store attempts to communicate security and privacy infor-
mation to users through multiple disclosure mechanisms: the
“Contains ads” field, the developer-submitted Data Safety
Section, and—specific to VPN apps—a recently introduced
“Verified” badge indicating compliance with Google’s security
guidelines and MASA Level 2 validation [[I09]-[111]. While
these disclosures are a step toward transparency, they are
neither comprehensive nor necessarily accurate. Prior work
has shown discrepancies in developer-reported data safety

claims [[112]], and the complexity and variability of these
disclosures may leave users confused rather than informed.
In practice, they risk functioning more as marketing signals
than meaningful security guarantees. More work is needed
to evaluate the effectiveness and interpretability of these
labels for mobile VPN applications, using frameworks such
as MVPNalyzer.

VPN Routing on Android: Correctly configuring VPN
routing behavior on Android is non-trivial. VPN apps must
coordinate multiple mechanisms to ensure that all user
traffic is properly tunneled: addDnsServer () to spec-
ify DNS server used, addRoute () to add IP-based rout-
ing rules, add (dis)AllowedApplication () to specify
application-based routing rules using fwmark and app UID,
and protect () on sockets to prevent the tunnel connection
itself going into the tunnel resulting in routing loop [21]]. This
complexity leaves significant room for misconfiguration, and
we observed several apps in our dataset leaking DNS or user
traffic as a result.

We discovered cases such as com.v2cross.foxo,
which, instead of adding a default “catch-all” route to the
tunnel interface, selectively routes large subnets through the
tunnel, leaving gaps that leak traffic. This illustrates MVPN-
alyzer’s capacity for supporting deeper, targeted analyses of
mobile VPNs. More broadly, our findings underscore the need
for Android to offer more centralized or simplified routing
interfaces for VPN apps, reducing the likelihood of developer
error in critical privacy-preserving infrastructure.

Extensibility to iOS: While our current framework focuses
on Android, the core analytical principles and methodolo-
gies we present are largely platform-agnostic and can be
extended to iOS with appropriate adaptations. Because MVP-
Nalyzer relies on root capabilities such as taking a packet
capture, listing sockets opened by all applications, and set-
ting LD_PRELOAD, the most straightforward implementa-
tion of MVPNalyzer on iOS would also require a jailbroken
device. In this case, the primary adaptation required is to
use the DYLD_INSERT_LIBRARIES environment variable
to inject a custom library for TLS decryption, rather than
LD_PRELOAD. However, iOS is less amenable to jailbreaking
than Android, and may require older devices or operating
system versions [113] to achieve it. If jailbreaking is not
possible, it is still possible to intercept and decrypt TLS
traffic using tools such as mitmproxy, albeit with certain
limitations (e.g., certificate pinning).

End User Impact: MVPNalyzer reveals pervasive insecu-
rity across VPN services. These issues translate into tangi-
ble risks for users, evidenced by multiple documented past
incidents of exploitation and harm. For example, the Daixin
ransomware group specifically targeted poorly protected VPN
servers and used them to exfiltrate health record data, resulting
in an advisory by the FBI and Cybersecurity and Infrastructure
Security Agency (CISA) [114]. Similarly, a construction com-
pany suffered the exfiltration of more than 60,000 potentially
sensitive documents, along with financial losses, after attackers
exploited weak VPNs used for remote network access [115].

13

In another escalatory attack, adversaries exploited a VPN
appliance used for remote administration of modems and
routers on a satellite network, subsequently compromising
thousands of consumer modems across Europe and disrupting
communications in Ukraine and other countries [116]]. Such
real-world consequences validate the importance of MVPNa-
lyzer in identifying and mitigating risks posed by insecure or
otherwise untrustworthy VPNs.

Responsible Disclosure: We disclosed our findings to all
VPN providers, except in cases where the issues are related
more to transparency for end users than for exploitable vul-
nerabilities, including a lack of obfuscation (relevant to users
in regions where using VPN apps can put users at risk) and
the presence of tracking (relevant to users who want to avoid
third-party tracking by using a VPN).

However, the most critical issue we identified is tunnel
hijacking, which we disclosed on a priority basis. We received
acknowledgement from 2 out of the 5 providers, both of
which promised to transfer VPN configuration files over
HTTPS. One of the providers responded to our disclosure
as follows: “We’ve reviewed your findings and will prioritize
implementing a fix to ensure OpenVPN configuration files
are transmitted securely using HTTPS with proper certificate
validation.” In our disclosures, we provided all relevant details
of the weaknesses identified, along with recommendations for
remediation, and we have retained the corresponding packet
captures.

Availability: We envision MVPNalyzer as a public, ex-
tensible tool that enables continuous auditing of security
and privacy practices in the VPN ecosystem by a range of
stakeholders. To this end, we are fully committed to open-
sourcing the framework for use by the broader community.
Our project page is available at https://censoredplanet.org/#/
research/securing-pets. Furthermore, we list all tested apps for
which MVPNalyzer uncovered issues in Table

VIII. CONCLUSION

Mobile VPN applications occupy a uniquely privileged po-
sition, as they intercept all network traffic from a user’s device,
often containing sensitive personal data. To evaluate whether
the trust is justified, we developed MVPNalyzer, the first
extensible analysis framework for systematically investigating
Android VPN applications. Our system addresses the unique
challenges of mobile traffic collection and attribution, allowing
for modular analysis across a broad range of behaviors. We
applied MVPNalyzer to 281 operational free VPN apps from
the Google Play Store and uncovered alarming issues in
security and privacy practices—including the transmission of
unencrypted traffic, traffic leakage, lack of obfuscation, device
and user tracking, and insecure VPN tunnel configurations.
Many of these apps found with issues have tens of millions
of installs and appear among top Play Store search results.

IX. ETHICAL CONSIDERATIONS

Our study adheres to the principles of the Menlo Re-
port [117]. No human subjects or user data were involved; all

https://censoredplanet.org/#/research/securing-pets
https://censoredplanet.org/#/research/securing-pets

experiments were conducted on devices controlled and owned
by the authors. Identified vulnerabilities, such as unencrypted
transmission of VPN configuration files and traffic leaks,
affected only the VPN client apps on our test devices and
were disclosed responsibly to affected providers. Further, no
server-side systems were impacted.

X. ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers for
their constructive feedback. This research was supported by
the National Science Foundation under Grant Numbers CNS-
2452883 and CNS-2452884.

(1]

[2]

(3]

[4]

[3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, “I Know Why You
Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis,”
in Privacy Enhancing Technologies, 2014.

R. Gonzalez, C. Soriente, and N. Laoutaris, “User profiling in the time
of https,” in Proceedings of the 2016 Internet Measurement Conference,
2016.

T. Libert, “Privacy implications of health information seeking on the
web,” Communications of the ACM, 2015.

Federal Trade Commission, “A Look At What ISPs Know About
You: Examining the Privacy Practices of Six Major Internet Service
Providers,” Federal Trade Commission, Staff Report, 2021. [Online].
Available: https://www.ftc.gov/system/files/documents/reports/look-
what-isps-know-about-you-examining- privacy- practices-six-major-
internet-service-providers/p195402_isp_6b_staff_report.pdf]

D. Litvinova, “The cyber gulag: How Russia tracks, censors
and controls its citizens,” AP News. [Online]. Available:
https://apnews.com/article/russia-crackdown-surveillance-censorship-
war-ukraine- internet-dab3663774feb666d6d0025bcd082tba

P. Mozur, A. Satariano, A. Krolik, and A. Aufrichtig, ““They Are
Watching’: Inside Russia’s Vast Surveillance State,” The New York
Times. [Online]. Available: https://www.nytimes.com/interactive/2022/
09/22/technology/russia-putin-surveillance-spying.html

J. Zhang, K. Psounis, M. Haroon, and Z. Shafiq, “Harpo: Learning
to subvert online behavioral advertising,” in Network and Distributed
Systems Security Symposium 2022 (NDSS’22), 2021.

S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,
A. Narayanan, and E. W. Felten, “Cookies That Give You Away: The
Surveillance Implications of Web Tracking,” in Proceedings of the 24th
International Conference on World Wide Web, 2015.

H. J. Smith, T. Dinev, and H. Xu, “Information privacy research: an
interdisciplinary review,” MIS quarterly, 2011.

Namecheap, “Google Trends Reveals Surge in Demand for VPN,”
https://www.namecheap.com/blog/vpn-surge-in-demand/, 2020.

J. Koebert and K. Lane, “2025 VPN Statistics and Consumer
Report: 61% of Americans Remain Unprotected Online,” https:/
allaboutcookies.org/vpn-usage-survey, 2025.

R. Ramesh, A. Vyas, and R. Ensafi, ““All of them claim to be the
best”: Multi-perspective study of VPN users and VPN providers,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023.

M. Ikram, N. Vallina-Rodriguez, S. Seneviratne, M. A. Kaafar, and
V. Paxson, “An analysis of the privacy and security risks of android
vpn permission-enabled apps,” in Proceedings of the 2016 internet
measurement conference, 2016.

M. T. Khan, J. DeBlasio, G. M. Voelker, A. C. Snoeren, C. Kanich, and
N. Vallina-Rodriguez, “An empirical analysis of the commercial vpn
ecosystem,” in Proceedings of the Internet Measurement Conference
2018, 2018.

A. Maghsoudlou, L. Vermeulen, I. Poese, and O. Gasser, “Characteriz-
ing the VPN Ecosystem in the Wild,” in Passive and Active Measure-
ment: 24th International Conference, PAM 2023, Virtual Event, March
21-23, 2023, Proceedings, 2023.

B. Mixon-Baca, J. Knockel, D. Xue, T. Ayyagari, D. Kapur, R. Ensafi,
and J. R. Crandall, “Attacking connection tracking frameworks as
used by virtual private networks,” Proceedings on Privacy Enhancing
Technologies, 2024.

14

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

N. Xue, Y. Malla, Z. Xia, C. Popper, and M. Vanhoef, “Bypassing
Tunnels: Leaking VPN Client Traffic by Abusing Routing Tables,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023.

R. Ramesh, L. Evdokimov, D. Xue, and R. Ensafi, “VPNalyzer:
Systematic Investigation of the VPN Ecosystem,” in Network and
Distributed System Security. The Internet Society, 2022.

X. Mi, S. Tang, Z. Li, X. Liao, F. Qian, and X. Wang, “Your phone
is my proxy: Detecting and understanding mobile proxy networks,”
in Proceeding of ISOC Network and Distributed System Security
Symposium (NDSS), 2021, 2021.

G. Cirlig, M. Elizen, L. Kaye, J. Marques, V. Parthasarathy, J. Santos,
A. Sell, and I. Vasilyeva, “Satori threat intelligence alert: Proxylib
and LumiApps transform mobile devices into proxy nodes,” https:
//[www.humansecurity.com/learn/blog/satori-threat-intelligence-alert-
proxylib-and-lumiapps- transform-mobile-devices-into- proxy-nodes/,
Mar 2025.

“VPN | Connectivity | Android Developers,”
//developer.android.com/develop/connectivity/vpn, 2025.

K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos,
D. Mccoy, A. Nappa, V. Paxson, P. Pearce, N. Provos, and M. A.
Rajab, “Ad Injection at Scale: Assessing Deceptive Advertisement
Modifications,” in 2015 IEEE Symposium on Security and Privacy,
2015.

B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune,
A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson, “An analysis of
China’s “Great Cannon”,” in 5th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 15). USENIX Association,
Aug. 2015.

M. Namara, D. Wilkinson, K. Caine, and B. P. Knijnenburg, “Emotional
and practical considerations towards the adoption and abandonment
of vpns as a privacy-enhancing technology,” Proceedings on Privacy
Enhancing Technologies, 2020.

A. Dutkowska-Zuk, A. Hounsel, A. Morrill, A. Xiong, M. Chetty, and
N. Feamster, “How and why people use virtual private networks,” in
31st USENIX Security Symposium (USENIX Security 22), 2022.

C. Crail and L. Holznienkemper, “Top VPN Statistics And Trends,”
https://www.forbes.com/advisor/business/vpn-statistics/, 2025.

A. Vigderman and G. Turner, “2025 VPN Usage Statistics,” https:/
www.security.org/vpn/statistics/, 2025.

“VpnService | Android Developers,” https://developer.android.com/
reference/android/net/VpnService, 2025.

K. L. Wu, M. H. Hue, N. M. Poon, K. M. Leung, W. Y. Po, K. T.
Wong, S. H. Hui, and S. Y. Chau, “Back to School: On the (In)Security
of Academic VPNs,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023.

D. Xue, R. Ramesh, A. Jain, M. Kallitsis, J. A. Halderman, J. R.
Crandall, and R. Ensafi, “OpenVPN is open to VPN fingerprinting,” in
31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, 2022.

J. Wilson, D. McLuskie, and E. Bayne, “Investigation into the security
and privacy of iOS VPN applications,” in Proceedings of the 15th In-
ternational Conference on Availability, Reliability and Security, 2020.
D. Felsch, M. Grothe, J. Schwenk, A. Czubak, and M. Szymanek,
“The Dangers of Key Reuse: Practical Attacks on IPsec IKE,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

V. C. Perta, M. Barbera, G. Tyson, H. Haddadi, A. Mei et al., “A Glance
through the VPN Looking Glass: IPv6 Leakage and DNS Hijacking
in Commercial VPN clients,” Proceedings on Privacy Enhancing
Technologies, 2015.

Q. Zhang, J. Li, Y. Zhang, H. Wang, and D. Gu, “Oh-Pwn-VPN!
Security Analysis of OpenVPN-Based Android Apps,” in Cryptology
and Network Security, 2018.

JoMingyu, “google-play-scraper.” [Online]. Available: https://pypi.org/
project/google-play-scraper/

“Install ~ System CA Certificate on Android Emulator,”
https://docs.mitmproxy.org/stable/howto-install-system-trusted-ca-
android/.

C. Brubake, “Changes to Trusted Certificate Authorities in Android
Nougat,” https://android-developers.googleblog.com/2016/07/changes-
to-trusted-certificate.html, 2016.

“Network security configuration | Security | Android Developers,”
https://developer.android.com/privacy-and-security/security-
config#CertificatePinning, 2025.

https:

https://www.ftc.gov/system/files/documents/reports/look-what-isps-know-about-you-examining-privacy-practices-six-major-internet-service-providers/p195402_isp_6b_staff_report.pdf
https://www.ftc.gov/system/files/documents/reports/look-what-isps-know-about-you-examining-privacy-practices-six-major-internet-service-providers/p195402_isp_6b_staff_report.pdf
https://www.ftc.gov/system/files/documents/reports/look-what-isps-know-about-you-examining-privacy-practices-six-major-internet-service-providers/p195402_isp_6b_staff_report.pdf
https://apnews.com/article/russia-crackdown-surveillance-censorship-war-ukraine-internet-dab3663774feb666d6d0025bcd082fba
https://apnews.com/article/russia-crackdown-surveillance-censorship-war-ukraine-internet-dab3663774feb666d6d0025bcd082fba
https://www.nytimes.com/interactive/2022/09/22/technology/russia-putin-surveillance-spying.html
https://www.nytimes.com/interactive/2022/09/22/technology/russia-putin-surveillance-spying.html
https://www.namecheap.com/blog/vpn-surge-in-demand/
https://allaboutcookies.org/vpn-usage-survey
https://allaboutcookies.org/vpn-usage-survey
https://www.humansecurity.com/learn/blog/satori-threat-intelligence-alert-proxylib-and-lumiapps-transform-mobile-devices-into-proxy-nodes/
https://www.humansecurity.com/learn/blog/satori-threat-intelligence-alert-proxylib-and-lumiapps-transform-mobile-devices-into-proxy-nodes/
https://www.humansecurity.com/learn/blog/satori-threat-intelligence-alert-proxylib-and-lumiapps-transform-mobile-devices-into-proxy-nodes/
https://developer.android.com/develop/connectivity/vpn
https://developer.android.com/develop/connectivity/vpn
https://www.forbes.com/advisor/business/vpn-statistics/
https://www.security.org/vpn/statistics/
https://www.security.org/vpn/statistics/
https://developer.android.com/reference/android/net/VpnService
https://developer.android.com/reference/android/net/VpnService
https://pypi.org/project/google-play-scraper/
https://pypi.org/project/google-play-scraper/
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://developer.android.com/privacy-and-security/security-config#CertificatePinning
https://developer.android.com/privacy-and-security/security-config#CertificatePinning

[39]
[40]
[41]

[42]

[43]

[44]
[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]
[63]

[64]

Frida Project, “Frida: A world-class dynamic instrumentation toolkit,”
https://frida.re/, 2025.

@QO0120S, “Bypass SSL Pinning,”
@Q0120S/bypass-ssl-pinning/, 2025.
“ptrace(2) - Linux manual page,” |https://man7.org/linux/man-pages/
man2/ptrace.2.html, 2025.

A. Druffel and K. Heid, “Davinci: Android app analysis beyond frida
via dynamic system call instrumentation,” in Applied Cryptography and
Network Security Workshops: ACNS 2020 Satellite Workshops, AIBlock,
AIHWS, AloTS, Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy,
October 19-22, 2020, Proceedings 18, 2020.

A. Tchana, L. Wapet, and Y.-D. Bromberg, “Odile: A scalable tracing
tool for non-rooted and on-device Android phones,” in Proceedings of
the 25th International Symposium on Research in Attacks, Intrusions
and Defenses, 2022.

“ld.so(8) - Linux manual page,” |https://man7.org/linux/man-pages/
mang/ld.so.8.html, 2024.

“SSL_new - OpenSSL Documentation,”
master/man3/SSL_new/, 2025.

A. Shuba and A. Markopoulou, “NoMoATS: Towards Automatic
Detection of Mobile Tracking,” Proceedings on Privacy Enhancing
Technologies, 2020.

“ss(8) - Linux manual page,” https://man7.org/linux/man-pages/man8/
ss.8.html, 2025.

J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 Ways to Leak Your Data: An Exploration of Apps’
Circumvention of the Android Permissions System,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019.

“Ul/Application Exerciser Monkey | Android Studio | Android De-
velopers,” https://developer.android.com/studio/test/other-testing-tools/
monkey, 2023.

“A research-oriented top sites ranking hardened against manipulation
- Tranco,” https://tranco-list.eu/, 2025.

D. Milmo, “Russia blocks access to Facebook and Twitter,” The
Guardian. [Online]. Available: https://www.theguardian.com/world/
2022/mar/04/russia-completely-blocks-access-to-facebook-and-twitter:
G. Peck, “Myanmar’s embattled military government cracks down on
free flow of news by blocking VPNs,” AP News. [Online]. Avail-
able: https://apnews.com/article/myanmar-censorship- virtual-private-
network-facebook-79fb4cc0c3c4317844d0c00b0be1d9d1

A. McDonald, M. Bernhard, L. Valenta, B. VanderSloot, W. Scott,
N. Sullivan, J. A. Halderman, and R. Ensafi, “403 Forbidden: A
Global View of CDN Geoblocking,” in Proceedings of the Internet
Measurement Conference 2018, 2018.

A. Ablove, S. Chandrashekaran, H. Le, R. S. Raman, R. Ramesh,
H. Oppenheimer, and R. Ensafi, “Digital Discrimination of Users in
Sanctioned States: The Case of the Cuba Embargo,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

S. Afroz, M. C. Tschantz, S. Sajid, S. A. Qazi, M. Javed, and
V. Paxson, “Exploring Server-side Blocking of Regions,” 2018.
[Online]. Available: https://arxiv.org/abs/1805.11606

“Data and file storage overview | App data and files | Android Devel-
opers,” https://developer.android.com/training/data-storage, 2025.
“File-based encryption | Android Open Source Project,” https:/
source.android.com/docs/security/features/encryption/file-based, 2025.
OpenVPN, “OpenVPN Connect - VPN For Your Operating System,”
https://openvpn.net/client/.

A. Possemato and Y. Fratantonio, “Towards HTTPS Everywhere on
Android: We Are Not There Yet,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020.

“The Zeek Network Security Monitor,” https://zeek.org, 2025.

“Spicy — Generating Robust Parsers for Protocols & File Formats —
Spicy v1.13.0-dev.191,” |https://docs.zeek.org/projects/spicy/en/latest/,
2025.

“JSON,” https://www.json.org/json-en.html, 2025.

schwabe, “GitHub - schwabe/ics-openvpn: OpenVPN for
Android,” https://github.com/schwabe/ics-openvpn/blob/
85a015¢610e79dedf18c8c89b0a9%eb92901cf896/main/src/main/java/de/
blinkt/openvpn/core/ConfigParser.java, 2025.

J. L. Hall, M. D. Aaron, A. Andersdotter, B. Jones, N. Feamster,
and M. Knodel, “A Survey of Worldwide Censorship Techniques,”
RFC 9505, 2023. [Online]. Available: https://www.rfc-editor.org/info/
rfc9505

https://codeshare.frida.re/

https://docs.openssl.org/

15

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]
[75]

[76]
[77]

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

P. Winter and S. Lindskog, “How the Great Firewall of China is Block-
ing Tor,” in 2nd USENIX Workshop on Free and Open Communications
on the Internet (FOCI 12). USENIX Association, 2012.

M. Wu, J. Sippe, D. Sivakumar, J. Burg, P. Anderson, X. Wang,
K. Bock, A. Houmansadr, D. Levin, and E. Wustrow, “How the Great
Firewall of China Detects and Blocks Fully Encrypted Traffic,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023.

D. Xue, B. Mixon-Baca, ValdikSS, A. Ablove, B. Kujath, J. R. Cran-
dall, and R. Ensafi, “TSPU: Russia’s decentralized censorship system,”
in Proceedings of the 22nd ACM Internet Measurement Conference,
2022.

ValdikSS, “Blocking VPN protocols on TSPU (08/05/2023 -
xX.xXx.202x),” https://ntc.party/t/vpn-05082023-xxxx202x/5124/7,
2023.

R. Ensafi, P. Winter, A. Mueen, and J. Crandall, “Analyzing the Great
Firewall of China Over Space and Time,” Proceedings on Privacy
Enhancing Technologies, 2015.

P. Winter and S. Lindskog, “How the Great Firewall of China is Block-
ing Tor,” in 2nd USENIX Workshop on Free and Open Communications
on the Internet (FOCI 12). USENIX Association, Aug. 2012.
“nDPI — ntop,” https://www.ntop.org/products/deep-packet-inspection/
ndpi/, 2025.

A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The Lockdown Effect: Implications
of the COVID-19 Pandemic on Internet Traffic,” in Proceedings of the
ACM Internet Measurement Conference, 2020.

Oracle, “Chapter 6. names,” https://docs.oracle.com/javase/specs/jls/
se8/html/jls-6.html, 2025.

P. S. List, “Public Suffix List,” https://publicsuffix.org/, 2025.

Z. Whittaker, “Privacy group accuses Hotspot Shield
of snooping on web traffic,’ ZDNET. [Online]. Avail-
able: |https://www.zdnet.com/article/privacy- group-accuses-hotspot-

shield- of-snooping-on-web-traffic/

“EasyList - Overview,” https://easylist.to/, 2025.

J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “ReCon:
Revealing and Controlling PII Leaks in Mobile Network Traffic,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, 2016.

“Advertising ID - Play Console Help,” https://support.google.com/
googleplay/android-developer/answer/6048248| 2025.

J. Koetsier, “5 billion ad events show that fewer than 1% of Android
users opt out of personalized ads,” https://easylist.to/, 2023.
OpenVPN, “Reference Manual For OpenVPN 2.6,” |https:
//lopenvpn.net/community-resources/reference- manual-for-openvpn-2-
6/.

——, “Hardening OpenVPN Security,” https://openvpn.net/
community-resources/hardening-openvpn-security/.

E. Crist, “Multi-Factor Authentication with OpenVPN | Com-
munity Edition,” https://blog.openvpn.net/multi-factor-authentication-
with-openvpn-community-edition/, 2020.

OpenVPN, “Deprecated Options in OpenVPN,”
//community.openvpn.net/openvpn/wiki/DeprecatedOptions,
Forcepoint, “ThreatSeeker URL Categories and Description,”
https://help.forcepoint.com/fpone/migration/webtothreatseekerurl/
guid-b8ac3928-ab4c-4468-bt16-4a6d4932c2c7.html, 2025.
“IP-APIL.com - Geolocation API - Documentation - JSON,” https://ip-
api.com/docs/api:json, 2025.

“<application> | App Architecture | Android Developer,”
https://developer.android.com/guide/topics/manifest/application-
element#usesCleartextTratfic, 2025.

“Android 7.0 for Developers | Android Developers,”
https://developer.android.com/about/versions/nougat/android-
7.0#network_security_config, 2024.

“Network security configuration | Security | Android Developers,”
https://developer.android.com/privacy-and-security/security-
config#CleartextTrafficPermitted, 2025.

“Adoption & Usage Worldwide | Cloudflare Radar,” https:/
radar.cloudflare.com/adoption-and-usage?dateRange=28d, 2025.

G. Baker, “Another Door Closes: Authoritarians Expand Restrictions
on Virtual Private Networks,” |https://freedomhouse.org/article/
another-door-closes-authoritarians-expand-restrictions- virtual-private-
networks, 2024.

https:

https://frida.re/
https://codeshare.frida.re/@Q0120S/bypass-ssl-pinning/
https://codeshare.frida.re/@Q0120S/bypass-ssl-pinning/
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://docs.openssl.org/master/man3/SSL_new/
https://docs.openssl.org/master/man3/SSL_new/
https://man7.org/linux/man-pages/man8/ss.8.html
https://man7.org/linux/man-pages/man8/ss.8.html
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://tranco-list.eu/
https://www.theguardian.com/world/2022/mar/04/russia-completely-blocks-access-to-facebook-and-twitter
https://www.theguardian.com/world/2022/mar/04/russia-completely-blocks-access-to-facebook-and-twitter
https://apnews.com/article/myanmar-censorship-virtual-private-network-facebook-79fb4cc0c3c4317844d0c00b0be1d9d1
https://apnews.com/article/myanmar-censorship-virtual-private-network-facebook-79fb4cc0c3c4317844d0c00b0be1d9d1
https://arxiv.org/abs/1805.11606
https://developer.android.com/training/data-storage
https://source.android.com/docs/security/features/encryption/file-based
https://source.android.com/docs/security/features/encryption/file-based
https://openvpn.net/client/
https://zeek.org
https://docs.zeek.org/projects/spicy/en/latest/
https://www.json.org/json-en.html
https://github.com/schwabe/ics-openvpn/blob/85a015c610e79dedf18c8c89b0a9eb92901cf896/main/src/main/java/de/blinkt/openvpn/core/ConfigParser.java
https://github.com/schwabe/ics-openvpn/blob/85a015c610e79dedf18c8c89b0a9eb92901cf896/main/src/main/java/de/blinkt/openvpn/core/ConfigParser.java
https://github.com/schwabe/ics-openvpn/blob/85a015c610e79dedf18c8c89b0a9eb92901cf896/main/src/main/java/de/blinkt/openvpn/core/ConfigParser.java
https://www.rfc-editor.org/info/rfc9505
https://www.rfc-editor.org/info/rfc9505
https://ntc.party/t/vpn-05082023-xxxx202x/5124/7
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html
https://publicsuffix.org/
https://www.zdnet.com/article/privacy-group-accuses-hotspot-shield-of-snooping-on-web-traffic/
https://www.zdnet.com/article/privacy-group-accuses-hotspot-shield-of-snooping-on-web-traffic/
https://easylist.to/
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://easylist.to/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/community-resources/reference-manual-for-openvpn-2-6/
https://openvpn.net/community-resources/hardening-openvpn-security/
https://openvpn.net/community-resources/hardening-openvpn-security/
https://blog.openvpn.net/multi-factor-authentication-with-openvpn-community-edition/
https://blog.openvpn.net/multi-factor-authentication-with-openvpn-community-edition/
https://community.openvpn.net/openvpn/wiki/DeprecatedOptions
https://community.openvpn.net/openvpn/wiki/DeprecatedOptions
https://help.forcepoint.com/fpone/migration/webtothreatseekerurl/guid-b8ac3928-a64c-4468-bf16-4a6d4932c2c7.html
https://help.forcepoint.com/fpone/migration/webtothreatseekerurl/guid-b8ac3928-a64c-4468-bf16-4a6d4932c2c7.html
https://ip-api.com/docs/api:json
https://ip-api.com/docs/api:json
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic
https://developer.android.com/about/versions/nougat/android-7.0#network_security_config
https://developer.android.com/about/versions/nougat/android-7.0#network_security_config
https://developer.android.com/privacy-and-security/security-config#CleartextTrafficPermitted
https://developer.android.com/privacy-and-security/security-config#CleartextTrafficPermitted
https://radar.cloudflare.com/adoption-and-usage?dateRange=28d
https://radar.cloudflare.com/adoption-and-usage?dateRange=28d
https://freedomhouse.org/article/another-door-closes-authoritarians-expand-restrictions-virtual-private-networks
https://freedomhouse.org/article/another-door-closes-authoritarians-expand-restrictions-virtual-private-networks
https://freedomhouse.org/article/another-door-closes-authoritarians-expand-restrictions-virtual-private-networks

[91]

[92]

[93]
[94]
[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]
[107]
[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

D. Xue, M. Kallitsis, A. Houmansadr, and R. Ensafi, “Fingerprinting
Obfuscated Proxy Traffic with Encapsulated TLS Handshakes,” in
33st USENIX Security Symposium (USENIX Security 24). USENIX
Association, 2024.

D. Xue, R. Stanley, P. Kumar, and R. Ensafi, “The Discriminative
Power of Cross-layer RTTs in Fingerprinting Proxy Traffic,” in Network
and Distributed System Security. The Internet Society, 2025.
“Disconnect - Tracker Protection lists,” |https://disconnect.me/
trackerprotection, 2025.

Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol, “Tracking the Trackers,”
ser. WWW 16, 2016.

“AdGuard filters | AdGuard Knowledge Base,” https://adguard.com/kb/
general/ad-filtering/adguard-filters, 2025.

S. Son, D. Kim, and V. Shmatikov, “What Mobile Ads Know About
Mobile Users,” in Network and Distributed System Security. The
Internet Society, 2016.

S. Zimmeck, N. Aggarwal, Z. Liu, and K. Kollnig, “From Ad
Identifiers to Global Privacy Control: The Status Quo and Future of
Opting Out of Ad Tracking on Android,” 2025. [Online]. Available:
https://arxiv.org/abs/2407.14938

“Privacy changes in Android 10,” https://developer.android.com/about/
versions/10/privacy/changes#non-resettable-device-ids, 2025.

U. Igbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the fingerprint-
ers: Learning to detect browser fingerprinting behaviors,” in 20271 IEEE
Symposium on Security and Privacy (SP), 2021.

A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling, “Fingerprint-
ing mobile devices using personalized configurations,” in Proceedings
on Privacy Enhancing Technologies, 2016.

K. Heid and J. Heider, “Haven’t we met before? - detecting device
fingerprinting activity on android apps,” in Proceedings of the 2024
European Interdisciplinary Cybersecurity Conference, 2024.
OpenVPN, “Source code for ssl_ncp.c, lines 129-133,
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/
ssl_ncp.c#L129-L133, 2025.

NIST, “CVE-2016-6329,” https://nvd.nist.gov/vuln/detail/cve-2016-
6329.

——, “CVE-2016-2183,” https://nvd.nist.gov/vuln/detail/CVE-2016-
2183.

M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication
using hash functions: The HMAC construction,” RSA Laboratories’
CryptoBytes, 1996.

OpenVPN, “VORACLE attack and OpenVPN,” https:
//community.openvpn.net/openvpn/wiki/ VORACLE!

——, “Security Advisory: The VORACLE attack vulnerability,” https:
/lopenvpn.net/security-advisory/the- voracle-attack- vulnerability/.

_ “OpenVPN versus Compression,” https://
community.openvpn.net/openvpn/wiki/Compression.

J. Zou and S. Lin, “Android Developers Blog: Helping users find trusted
apps on Google Play,” https://android-developers.googleblog.com/
2025/01/helping-users-find-trusted-apps-on-google-play.html, 2025.
“Improve your app’s security | Security | Android Develop-
ers,” hhttps://developer.android.com/privacy-and- security/security-best-
practices, 2025.

“AL2 - Lab Eval | App Defense Alliance,” |https:
/lappdefensealliance.dev/masa/masa-al2, 2025.

I. Arkalakis, M. Diamantaris, S. Moustakas, S. Ioannidis, J. Polakis,
and P. Ilia, “Abandon All Hope Ye Who Enter Here: A Dynamic,
Longitudinal Investigation of Android’s Data Safety Section,” in 33rd
USENIX Security Symposium (USENIX Security 24), 2024.

“Device Selection (iPhone),” https://ios.cfw.guide/get-started/select-
iphone/.

CISA, “CISA Advisory- Diaxin Team,” https://wWww.cisa.gov/news-
events/cybersecurity-advisories/aa22-294a| 2022.

B. Response, “Construction company avoids paying
ransom after compromised VPN leads to data exfiltration,”
https://www.coalitioninc.com/en-ca/case- studies/construction/client-
requires- strict-protocol-after-data-exfiltration, 2024.

V. Inc., “KA-SAT Network cyber attack overview,”
https://www.viasat.com/perspectives/corporate/2022/ka- sat-network-
cyber-attack-overview/, 2022.

E. Kenneally and D. Dittrich, “The Menlo Report: Ethical Principles
Guiding Information and Communication Technology Research,” Avail-
able at SSRN 2445102, 2012.

16

APPENDIX
A. VPN Apps Grouped by Detected Issues

https://disconnect.me/trackerprotection
https://disconnect.me/trackerprotection
https://adguard.com/kb/general/ad-filtering/adguard-filters
https://adguard.com/kb/general/ad-filtering/adguard-filters
https://arxiv.org/abs/2407.14938
https://developer.android.com/about/versions/10/privacy/changes#non-resettable-device-ids
https://developer.android.com/about/versions/10/privacy/changes#non-resettable-device-ids
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/ssl_ncp.c#L129-L133
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/ssl_ncp.c#L129-L133
https://nvd.nist.gov/vuln/detail/cve-2016-6329
https://nvd.nist.gov/vuln/detail/cve-2016-6329
https://nvd.nist.gov/vuln/detail/CVE-2016-2183
https://nvd.nist.gov/vuln/detail/CVE-2016-2183
https://community.openvpn.net/openvpn/wiki/VORACLE
https://community.openvpn.net/openvpn/wiki/VORACLE
https://openvpn.net/security-advisory/the-voracle-attack-vulnerability/
https://openvpn.net/security-advisory/the-voracle-attack-vulnerability/
https://community.openvpn.net/openvpn/wiki/Compression
https://community.openvpn.net/openvpn/wiki/Compression
https://android-developers.googleblog.com/2025/01/helping-users-find-trusted-apps-on-google-play.html
https://android-developers.googleblog.com/2025/01/helping-users-find-trusted-apps-on-google-play.html
https://developer.android.com/privacy-and-security/security-best-practices
https://developer.android.com/privacy-and-security/security-best-practices
https://appdefensealliance.dev/masa/masa-al2
https://appdefensealliance.dev/masa/masa-al2
https://ios.cfw.guide/get-started/select-iphone/
https://ios.cfw.guide/get-started/select-iphone/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-294a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-294a
https://www.coalitioninc.com/en-ca/case-studies/construction/client-requires-strict-protocol-after-data-exfiltration
https://www.coalitioninc.com/en-ca/case-studies/construction/client-requires-strict-protocol-after-data-exfiltration
https://www.viasat.com/perspectives/corporate/2022/ka-sat-network-cyber-attack-overview/
https://www.viasat.com/perspectives/corporate/2022/ka-sat-network-cyber-attack-overview/

Issue Type Apps

Unencrypted Traffic (61) Safe VPN, Nox VPN, MahsaNG, VPN Connect, Veee, Arab VPN, 4ebur.net, NewNode VPN, Delight VPN, Fast VPN
(com.express.vpn.master.save.browser.fast.proxy), Follow, Proxy Master, VPN (com.free.vpn.unlimited.hotpotshield.vpnmaster),
VPN 3000, japan VPN, Instabridge, India VPN, Japan Vpn Pro, KUTO VPN, Kylo Vpn, LVCHA VPN, Star VPN,
NotVPN (com.notvpn), NotVPN (com.notvpn2), Now VPN, Super VPN (com.optimizer.booster.fast.speedy.phone.smooth),
Pro Gamer VPN, WhitehatVPN, Andromeda VPN, Al VPN, Super VPN (com.supervpn.vpn.free.proxy), VPN SXP,
Secure VPN (com.techsphere.securevpn.ui), VPN Fast, Ultraunique VPN, Upnet, FoxoVPN, Viva VPN, Free VPN
(com.vpn.unlimited.free.private.access.fast.proxy.secure), wirevpn, YoyoVPN, VPN Free, NIGERIA VPN, VPN Freely, Fast
VPN (free.vpn.filter.unblock.proxy.hotspot.fastvpn), Super VPN (free.vpn.proxy.unblock.svd), Bamboo VPN, VPN Proxy Master,
JAPAN VPN, Fast VPN (free_vpn_master_unblock_super.proxy_secure_vpn_new_best_vpn), Node VPN, Gozal, Kiwi VPN (ki-
wivpn.connectip.ipchanger.unblocksites), Unicorn HTTPS, SkyVPN, BigMama, Free VPN (org.sanctuary.freeconnect), Fast VPN
(org.sanctuary.quickconnect), PLADUK VPN, Nine Tail VPN, WORLD VPN APP

Leak (29) Geo Tunnel, Java VPN, Noon VPN, AM TUNNEL LITE VPN, AM TUNNEL PRO, MahsaNG, GoFly VPN, Ostrich VPN, NewNode
VPN, Cookie, Delight VPN, Phone Guardian, Raytunnel, RoboProxy, Kylo Vpn, LVCHA VPN, XY VPN, Take Off, Tesla Proxy
Pro, Rosa VPN, Global VPN, Air Net VPN, FoxoVPN, V2net, Bolt VPN, Unicorn HTTPS, Free VPN (org.sanctuary.freeconnect),
Siam VPN, Nine Tail VPN

Obfuscation (169) Robust Tunnel VPN, AM TUNNEL LITE VPN, AM TUNNEL PRO, VPN Freedom, VPN Canada, Proton VPN, MeowPlus VPN,
Nox VPN, Free VPN (com.Free.Fast.Secure.VPN), MahsaNG, Onion VPN, Fire VPN, Gaming Master VPN, NAMO VPN, Asia Vpn,
Avira Security, Avira Phantom VPN, Bangladesh Vpn, Gaming Vpn, Germany Vpn, CandyLink VPN, 4ebur.net, NewNode VPN,
ColorVPN, ExVPN VPN, Delight VPN, QUICK VPN PRO, Fast VPN (com.express.vpn.master.save.browser.fast.proxy), Geo VPN,
VPN (com.fast.unblock.secure.vpn.master), Raytunnel, Lite VPN, VPN (com.free.vpn.unlimited.hotpotshield.vpnmaster), Super VPN
(com.freevpn.unlimited.free.vpn), Raid VPN, Gamers VPN, VPN 3000, Asia VPN, VPN AZ, VPN BD, GPVPN, VPN IN, VPN MY,
VPN PH, VPN SA, VPN TW, Sphere VPN, Gunnar VPN, japan VPN, VPN World, Instabridge, My Private VPN, IP Safe VPN,
RoboProxy, India VPN, Japan Vpn Pro, Japanese Browser Vpn, VPN (com.jystudio.vpn), Kylo Vpn, CheapVPN, #WiFi Hacker, Nic,
NotVPN (com.notvpn), NotVPN (com.notvpn2), 1Click VPN, SecureNet VPN, PandaVPN (com.pandavpn.androidproxy), PandaVPN
(com.pandavpnfree.androidproxy), Pawxy, PotatoVPN, PrimeX VPN, Pro Gamer VPN, Psiphon Pro, SATHU VPN, PUKANG
VPN, WhitehatVPN, Rapid VPN (com.rapid.vpn.unlimited.hotspot.secure), Rapid VPN (com.rapidconn.android), RedVPN, VPN UK,
Secure VPN, X-VPN, Shuttle VPN, Sigma VPN, VPN Unlimited, Tryme VPN, SOSO VPN, TikVPN, Speedify, Ultra VPN Proxy, VPN
(com.starnest.vpnandroid), VPN Online Shield, VPN SXP, Air Net VPN, Secure VPN (com.techsphere.securevpn.ui), Tower VPN,
VPN Fast, Trusted VPN, Ultraunique VPN, BerdVPN, VPN BRAZIL, TOP VPN, Unseen Online, Upnet, UstreamingVPN, FoxoVPN,
V2net, Viva VPN, Bolt VPN, VPN GO, Free VPN (com.vpn.unlimited.free.private.access.fast.proxy.secure), 4G VPN, 5G Global Vpn
Singapore, VPN99, USA VPN (com.vpnbyteproxy.vpnforusa), VPN Hero, wirevpn, OraVPN, Encrypto Vpn, YoyoVPN, ZIVPN, Zoog
VPN, FLY TUNNEL VPN, NIGERIA VPN, KOREA VPN, VPN Freely, Fast VPN (free.vpn.filter.unblock.proxy.hotspot.fastvpn),
IX VPN, Super VPN (free.vpn.proxy.unblock.svd), INDONESIA VPN, Bamboo VPN, JustVPN, VPN Proxy Master, AUSTRALIA
VPN, COLOMBIA VPN, EGYPT VPN, JAPAN VPN, MALAYSIA VPN, USA VPN (free.vpnusa.fast.unlimited.free.secure.turbo),
VIETNAM VPN, Fast VPN (free_vpn_master_unblock_super.proxy_secure_vpn_new_best_vpn), Gozal, VPN Mate, Kiwi VPN
(kiwivpn.connectip.ipchanger.unblocksites), Unicorn HTTPS, Light VPN, EC Tunnel LITE, Seed4.Me VPN, SkyVPN, Gaming VPN
(mobi.bgn.gamingvpn), HighSpeedVPN, 24CLAN VPN LITE, BigMama, Octohide VPN, Fast VPN (org.sanctuary.quickconnect),
Speedtest, PLADUK VPN, Kiwi VPN (secure.unblock.unlimited.proxy.snap.hotspot.shield), Siam VPN, Nine Tail VPN, SharkVPN,
EC Tunnel PRO, InHouse VPN, UFO FREE VPN, Australia VPN, China VPN, Korea VPN, Singapore VPN, WORLD VPN APP

Tracking (76) Tesla Proxy Pro, i2VPN, VPN Hero, Geo Tunnel, VPN Proxy Master, wirevpn, VPN Unlimited, VPN World, SkyVPN, Bolt
VPN, FoxoVPN, Gaming VPN (mobi.bgn.gamingvpn), VPN Master (gamingvpn.unlimtedvpn.vpnforgamers), Safe VPN, VPN
Fast, Ultrasurf VPN, VPN (com.free.vpn.unlimited.hotpotshield.vpnmaster), Banana VPN, RoboProxy, 24CLAN VPN LITE, VPN
(com.starnest.vpnandroid), VPN Free, Green VPN Free, VPN GO, Take Off, Travel VPN, Super VPN (com.freevpn.unlimited.free.vpn),
Geo VPN, Lantern, Planet VPN, OraVPN, EC Tunnel LITE, Kiwi VPN (kiwivpn.connectip.ipchanger.unblocksites),
Lion VPN, Rapid VPN (com.rapid.vpn.unlimited.hotspot.secure), mangoflutter, Voice VPN, Japanese Browser Vpn, Se-
cure VPN (com.fast.free.unblock.secure.vpn), #WiFi Hacker, 4ebur.net, Instabridge, ColorVPN, HighSpeedVPN, Fast VPN
(com.express.vpn.master.save.browser.fast.proxy), SailfishVPN, Pronto VPN, SPL VPN, Cookie, Sphere VPN, OvpnSpider, Light-
ning Direct VPN, Shuttle VPN, Cat Proxy, UFO FREE VPN, VPN XLock Pro, Unique VPN, QuarkVPN, Secure VPN
(com.techsphere.securevpn.ui), Thunder VPN, Phone Guardian, PotatoVPN, Encrypt VPN, TikVPN, Proxy Master, Fire VPN, Kiwi
VPN (secure.unblock.unlimited.proxy.snap.hotspot.shield), Trusted VPN, Zoog VPN, VPN 3000, AppVPN, GoFly VPN, Rez Tunnel,
Octohide VPN, Gamers VPN, VPN Private

OVPN Config (107) Raid VPN, VPN Brazil, VPN99, Fast VPN (com.express.vpn.master.save.browser.fast.proxy), Kiwi VPN (se-
cure.unblock.unlimited.proxy.snap.hotspot.shield), VPN 3000, ExXVPN VPN, VPN Malaysia, VPN TW, SPL VPN, VPN China,
Unique VPN, VPN JP, Gunnar VPN, VPN MY, VPN Hero, VPN Freedom, VPN.lat, Pronto VPN, GPVPN, japan VPN,
UstreamingVPN, Gaming Master VPN, Bolt VPN, Geo VPN, VPN Canada, Speedtest, Hamo Tunnel vpn5, VPN Indonesia,
Secure VPN, Zoog VPN, #WiFi Hacker, VPN India, SharkVPN, Free VPN (com.vpn.unlimited.free.private.access.fast.proxy.secure),
MR Tunnel VPN, Cafe VPN, VPN USA, Voice VPN, VPN (com.fast.vpn.secure.unblock.proxy), COLOMBIA VPN, Robust
Tunnel VPN, PrimeX VPN, Free VPN (com.Free.Fast.Secure.VPN), USA VPN (free.vpnusa.fast.unlimited.free.secure.turbo),
ACE VPN, Asia VPN, FLY TUNNEL VPN, VPN BRAZIL, VPN GO, Gaming VPN (mobi.bgn.gamingvpn), 5G Global Vpn
Singapore, VPN (com.jystudio.vpn), VPN AZ, OvpnSpider, Bangladesh Vpn, CandyLink VPN, Trusted VPN, VPN IN, InHouse
VPN, INDONESIA VPN, VPN Unblock, 4X TUNNEL, Al VPN, VPN Online Shield, Shuttle VPN, Gaming Vpn, Smart VPN,
VPN (com.free.vpn.unlimited.hotpotshield.vpnmaster), Hide My IP, JustVPN, VPN Connect, Riseup VPN, Bamboo VPN, VPN
(com.starnest.vpnandroid), Sigma VPN, KOREA VPN, NIGERIA VPN, Encrypto Vpn, QUICK VPN PRO, Instabridge, Japan Vpn
Pro, VPN servers in Russia, U-VPN, Super VPN (com.freevpn.unlimited.free.vpn), VPN (com.fast.unblock.secure.vpn.master), VPN
UK, AUSTRALIA VPN, EGYPT VPN, Andromeda VPN, VIETNAM VPN, VPN Unlimited, VPN PH, JAPAN VPN, Fire VPN,
Germany Vpn, VPN Germany, Tryme VPN, SOSO VPN, Lite VPN, Steady Fast VPN, Ultra VPN Proxy, OD VPN, VPN Australia,
MALAYSIA VPN, VPN SA, VPN BD

TABLE VI: Issues are grouped by category (defined in Section [VI| and illustrated in Figure . Apps are listed by name, with
package names included only when multiple apps share the same name.

17

	Introduction
	Background and Related Work
	VPNs on Android
	VPN Analysis

	MVPNalyzer Design
	Collection & Processing
	Data Collection
	App Metadata Collection
	Instrumentation & Configurations
	App Execution and Tunnel Establishment
	User Traffic Generation

	Data Processing
	Traffic Attribution
	TLS Decryption
	Protocol Translation
	Extracting VPN Configuration Files

	Analysis
	Unencrypted Traffic
	Traffic Leaks
	VPN Obfuscation
	Tracking and Fingerprinting
	VPN Configuration

	Results
	Unencrypted Traffic
	Traffic Leaks
	VPN Obfuscation
	Tracking and Fingerprinting
	VPN Configuration

	Discussion
	Conclusion
	Ethical Considerations
	Acknowledgement
	References
	Appendix
	VPN Apps Grouped by Detected Issues

